BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

723 related articles for article (PubMed ID: 10233733)

  • 1. Modulation of experimental blood stage malaria through blockade of the B7/CD28 T-cell costimulatory pathway.
    Taylor-Robinson AW; Smith EC
    Immunology; 1999 Mar; 96(3):498-504. PubMed ID: 10233733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of murine Lyme borreliosis by interruption of the B7/CD28 T-cell costimulatory pathway.
    Shanafelt MC; Kang I; Barthold SW; Bockenstedt LK
    Infect Immun; 1998 Jan; 66(1):266-71. PubMed ID: 9423867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways.
    Hayakawa Y; Takeda K; Yagita H; Van Kaer L; Saiki I; Okumura K
    J Immunol; 2001 May; 166(10):6012-8. PubMed ID: 11342617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Th1 cytokine production.
    Schweitzer AN; Sharpe AH
    J Immunol; 1998 Sep; 161(6):2762-71. PubMed ID: 9743334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Costimulation light: activation of CD4+ T cells with CD80 or CD86 rather than anti-CD28 leads to a Th2 cytokine profile.
    Broeren CP; Gray GS; Carreno BM; June CH
    J Immunol; 2000 Dec; 165(12):6908-14. PubMed ID: 11120816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation.
    Tao X; Constant S; Jorritsma P; Bottomly K
    J Immunol; 1997 Dec; 159(12):5956-63. PubMed ID: 9550393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The capacity of the natural ligands for CD28 to drive IL-4 expression in naïve and antigen-primed CD4+ and CD8+ T cells.
    Bian Y; Hiraoka S; Tomura M; Zhou XY; Yashiro-Ohtani Y; Mori Y; Shimizu J; Ono S; Dunussi-Joannopoulos K; Wolf S; Fujiwara H
    Int Immunol; 2005 Jan; 17(1):73-83. PubMed ID: 15569772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expansion of IL-3-responsive IL-4-producing non-B non-T cells correlates with anemia and IL-3 production in mice infected with blood-stage Plasmodium chabaudi malaria.
    Helmby H; Kullberg M; Troye-Blomberg M
    Eur J Immunol; 1998 Aug; 28(8):2559-70. PubMed ID: 9710233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway.
    Ndejembi MP; Teijaro JR; Patke DS; Bingaman AW; Chandok MR; Azimzadeh A; Nadler SG; Farber DL
    J Immunol; 2006 Dec; 177(11):7698-706. PubMed ID: 17114440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ig-isotype patterns of primary and secondary B cell responses to Plasmodium chabaudi chabaudi correlate with IFN-gamma and IL-4 cytokine production with CD45RB expression by CD4+ spleen cells.
    D'Império Lima MR; Alvarez JM; Furtado GC; Kipnis TL; Coutinho A; Minóprio P
    Scand J Immunol; 1996 Mar; 43(3):263-70. PubMed ID: 8602459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of protective CD4+ T-cell clones reactive to the murine malaria parasite Plasmodium chabaudi.
    Taylor-Robinson AW; Phillips RS
    Immunology; 1992 Sep; 77(1):99-105. PubMed ID: 1356918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective CD4+ T-cell lines raised against Plasmodium chabaudi show characteristics of either Th1 or Th2 cells.
    Taylor-Robinson AW; Phillips RS
    Parasite Immunol; 1993 Jun; 15(6):301-10. PubMed ID: 8103212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. B cells are required for the switch from Th1- to Th2-regulated immune responses to Plasmodium chabaudi chabaudi infection.
    Taylor-Robinson AW; Phillips RS
    Infect Immun; 1994 Jun; 62(6):2490-8. PubMed ID: 8188374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of B7 co-stimulatory molecules by astrocytes correlates with T cell activation and cytokine production.
    Soos JM; Ashley TA; Morrow J; Patarroyo JC; Szente BE; Zamvil SS
    Int Immunol; 1999 Jul; 11(7):1169-79. PubMed ID: 10383950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pertussis toxin-induced cytokine differentiation and clonal expansion of T cells is mediated predominantly via costimulation.
    Denkinger CM; Denkinger MD; Forsthuber TG
    Cell Immunol; 2007 Mar; 246(1):46-54. PubMed ID: 17601518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial cells modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated CD4(+) T cell alloactivation.
    Denton MD; Geehan CS; Alexander SI; Sayegh MH; Briscoe DM
    J Exp Med; 1999 Aug; 190(4):555-66. PubMed ID: 10449526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD28 costimulation is required for the expression of T-cell-dependent cell-mediated immunity against blood-stage Plasmodium chabaudi malaria parasites.
    Rummel T; Batchelder J; Flaherty P; LaFleur G; Nanavati P; Burns JM; Weidanz WP
    Infect Immun; 2004 Oct; 72(10):5768-74. PubMed ID: 15385476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CD28 related molecule ICOS: T cell modulation in the presence and absence of B7.1/2 and regulational expression in multiple sclerosis.
    Wiendl H; Neuhaus O; Mehling M; Wintterle S; Schreiner B; Mitsdoerffer M; Wienhold W; Weissert R; Wessels J; Hartung HP; Weller M; Tolosa E; Melms A
    J Neuroimmunol; 2003 Jul; 140(1-2):177-87. PubMed ID: 12864987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD28 ligands CD80 (B7-1) and CD86 (B7-2) induce long-term autocrine growth of CD4+ T cells and induce similar patterns of cytokine secretion in vitro.
    Levine BL; Ueda Y; Craighead N; Huang ML; June CH
    Int Immunol; 1995 Jun; 7(6):891-904. PubMed ID: 7577797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential requirement for CD28/CTLA-4-CD80/CD86 interactions in drug-induced type 1 and type 2 immune responses to trinitrophenyl-ovalbumin.
    Nierkens S; Aalbers M; Bol M; Bleumink R; van Kooten P; Boon L; Pieters R
    J Immunol; 2005 Sep; 175(6):3707-14. PubMed ID: 16148116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.