BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 10234827)

  • 1. Four critical aspartic acid residues potentially involved in the catalytic mechanism of Escherichia coli K-12 WaaR.
    Shibayama K; Ohsuka S; Sato K; Yokoyama K; Horii T; Ohta M
    FEMS Microbiol Lett; 1999 May; 174(1):105-9. PubMed ID: 10234827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved structural regions involved in the catalytic mechanism of Escherichia coli K-12 WaaO (RfaI).
    Shibayama K; Ohsuka S; Tanaka T; Arakawa Y; Ohta M
    J Bacteriol; 1998 Oct; 180(20):5313-8. PubMed ID: 9765561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant Escherichia coli K5 strain with the deletion of waaR gene decreases the molecular weight of the heparosan capsular polysaccharide.
    Huang H; Liu X; Lv S; Zhong W; Zhang F; Linhardt RJ
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7877-85. PubMed ID: 27079575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues.
    Saadat D; Harrison DH
    Biochemistry; 1998 Jul; 37(28):10074-86. PubMed ID: 9665712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation.
    Yethon JA; Vinogradov E; Perry MB; Whitfield C
    J Bacteriol; 2000 Oct; 182(19):5620-3. PubMed ID: 10986272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosyltransferases involved in biosynthesis of the outer core region of Escherichia coli lipopolysaccharides exhibit broader substrate specificities than is predicted from lipopolysaccharide structures.
    Leipold MD; Vinogradov E; Whitfield C
    J Biol Chem; 2007 Sep; 282(37):26786-26792. PubMed ID: 17631498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of two beta-1,3-glucosyltransferases from Escherichia coli serotypes O56 and O152.
    Brockhausen I; Hu B; Liu B; Lau K; Szarek WA; Wang L; Feng L
    J Bacteriol; 2008 Jul; 190(14):4922-32. PubMed ID: 18487334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional relationships between cyclodextrin glucanotransferase from an alkalophilic Bacillus and alpha-amylases. Site-directed mutagenesis of the conserved two Asp and one Glu residues.
    Nakamura A; Haga K; Ogawa S; Kuwano K; Kimura K; Yamane K
    FEBS Lett; 1992 Jan; 296(1):37-40. PubMed ID: 1346117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved aspartic acids are essential for the enzymic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Escherichia coli.
    Amer AO; Valvano MA
    Microbiology (Reading); 2002 Feb; 148(Pt 2):571-582. PubMed ID: 11832520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli DNA adenine methyltransferase: the structural basis of processive catalysis and indirect read-out.
    Coffin SR; Reich NO
    J Biol Chem; 2009 Jul; 284(27):18390-400. PubMed ID: 19419959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.
    Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG
    Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of residues involved in catalytic activity of the inverting glycosyl transferase WbbE from Salmonella enterica serovar borreze.
    Keenleyside WJ; Clarke AJ; Whitfield C
    J Bacteriol; 2001 Jan; 183(1):77-85. PubMed ID: 11114903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in the waaR gene of Escherichia coli which disrupt lipopolysaccharide outer core biosynthesis affect cell surface retention of group 2 capsular polysaccharides.
    Taylor CM; Goldrick M; Lord L; Roberts IS
    J Bacteriol; 2006 Feb; 188(3):1165-8. PubMed ID: 16428421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of the Escherichia coli Heptosyltransferase III: Exploring substrate specificity in lipopolysaccharide core biosynthesis.
    Mudapaka J; Taylor EA
    FEBS Lett; 2015 Jun; 589(13):1423-9. PubMed ID: 25957775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The C-glycosyltransferase IroB from pathogenic Escherichia coli: identification of residues required for efficient catalysis.
    Foshag D; Campbell C; Pawelek PD
    Biochim Biophys Acta; 2014 Sep; 1844(9):1619-30. PubMed ID: 24960592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of the essential Asp-48 and highly conserved His-43 elucidated by the pH dependence of the pseudouridine synthase TruB.
    Hamilton CS; Spedaliere CJ; Ginter JM; Johnston MV; Mueller EG
    Arch Biochem Biophys; 2005 Jan; 433(1):322-34. PubMed ID: 15581587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity.
    Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR
    Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase.
    Rothman SC; Voorhies M; Kirsch JF
    Protein Sci; 2004 Mar; 13(3):763-72. PubMed ID: 14767072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospho-N-acetyl-muramyl-pentapeptide translocase from Escherichia coli: catalytic role of conserved aspartic acid residues.
    Lloyd AJ; Brandish PE; Gilbey AM; Bugg TD
    J Bacteriol; 2004 Mar; 186(6):1747-57. PubMed ID: 14996806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.