BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 10234829)

  • 1. The Bacillus subtilis regulator protein SpoIIE shares functional and structural similarities with eukaryotic protein phosphatases 2C.
    Schroeter R; Schlisio S; Lucet I; Yudkin M; Borriss R
    FEMS Microbiol Lett; 1999 May; 174(1):117-23. PubMed ID: 10234829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases.
    Adler E; Donella-Deana A; Arigoni F; Pinna LA; Stragler P
    Mol Microbiol; 1997 Jan; 23(1):57-62. PubMed ID: 9004220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The icfG gene cluster of Synechocystis sp. strain PCC 6803 encodes an Rsb/Spo-like protein kinase, protein phosphatase, and two phosphoproteins.
    Shi L; Bischoff KM; Kennelly PJ
    J Bacteriol; 1999 Aug; 181(16):4761-7. PubMed ID: 10438742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division.
    Duncan L; Alper S; Arigoni F; Losick R; Stragier P
    Science; 1995 Oct; 270(5236):641-4. PubMed ID: 7570023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution.
    Das AK; Helps NR; Cohen PT; Barford D
    EMBO J; 1996 Dec; 15(24):6798-809. PubMed ID: 9003755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The "catalytic" triad of isocitrate dehydrogenase kinase/phosphatase from E. coli and its relationship with that found in eukaryotic protein kinases.
    Oudot C; Cortay JC; Blanchet C; Laporte DC; Di Pietro A; Cozzone AJ; Jault JM
    Biochemistry; 2001 Mar; 40(10):3047-55. PubMed ID: 11258918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase, RapB.
    Tzeng YL; Feher VA; Cavanagh J; Perego M; Hoch JA
    Biochemistry; 1998 Nov; 37(47):16538-45. PubMed ID: 9843420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus subtilis mutations that alter the pathway of phosphorylation of the anti-anti-sigmaF factor SpoIIAA lead to a Spo- phenotype.
    Lee CS; Clarkson J; Shu JC; Campbell ID; Yudkin MD
    Mol Microbiol; 2001 Apr; 40(1):9-19. PubMed ID: 11298272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the phosphatase domain of the cell fate determinant SpoIIE from Bacillus subtilis.
    Levdikov VM; Blagova EV; Rawlings AE; Jameson K; Tunaley J; Hart DJ; Barak I; Wilkinson AJ
    J Mol Biol; 2012 Jan; 415(2):343-58. PubMed ID: 22115775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-dependent SpoIIE oligomerization stabilizes FtsZ during asymmetric division in Bacillus subtilis.
    Cendrowicz E; de Sousa Borges A; Kopacz M; Scheffers DJ
    PLoS One; 2017; 12(3):e0174713. PubMed ID: 28358838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the cell-specificity of sigma F activity in Bacillus subtilis.
    Errington J; Feucht A; Lewis PJ; Lord M; Magnin T; Najafi SM; Wilkinson JF; Yudkin MD
    Philos Trans R Soc Lond B Biol Sci; 1996 Apr; 351(1339):537-42. PubMed ID: 8735276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification, kinetic properties, and intracellular concentration of SpoIIE, an integral membrane protein that regulates sporulation in Bacillus subtilis.
    Lucet I; Borriss R; Yudkin MD
    J Bacteriol; 1999 May; 181(10):3242-5. PubMed ID: 10322028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient regulation of sigmaF, the first sporulation-specific sigma factor in B.subtilis.
    Clarkson J; Campbell ID; Yudkin MD
    J Mol Biol; 2004 Sep; 342(4):1187-95. PubMed ID: 15351644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR studies of the interactions of SpoIIAA with its partner proteins that regulate sporulation in Bacillus subtilis.
    Clarkson J; Campbell ID; Yudkin MD
    J Mol Biol; 2001 Nov; 314(3):359-64. PubMed ID: 11846550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conserved allosteric element controls specificity and activity of functionally divergent PP2C phosphatases from Bacillus subtilis.
    Ho K; Bradshaw N
    J Biol Chem; 2021; 296():100518. PubMed ID: 33684446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bypass suppression analysis maps the signalling pathway within a multidomain protein: the RsbP energy stress phosphatase 2C from Bacillus subtilis.
    Brody MS; Stewart V; Price CW
    Mol Microbiol; 2009 Jun; 72(5):1221-34. PubMed ID: 19432806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE.
    Lucet I; Feucht A; Yudkin MD; Errington J
    EMBO J; 2000 Apr; 19(7):1467-75. PubMed ID: 10747015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the sigma(B) transcription factor in Bacillus subtilis.
    Brody MS; Vijay K; Price CW
    J Bacteriol; 2001 Nov; 183(21):6422-8. PubMed ID: 11591687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic dissection of the sporulation protein SpoIIE and its role in asymmetric division in Bacillus subtilis.
    Carniol K; Ben-Yehuda S; King N; Losick R
    J Bacteriol; 2005 May; 187(10):3511-20. PubMed ID: 15866939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SpoIIAA governs the release of the cell-type specific transcription factor sigma F from its anti-sigma factor SpoIIAB.
    Duncan L; Alper S; Losick R
    J Mol Biol; 1996 Jul; 260(2):147-64. PubMed ID: 8764397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.