These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10235623)

  • 1. Amino acid changes in the repressor of bacteriophage lambda due to temperature-sensitive mutations in its cI gene and the structure of a highly temperature-sensitive mutant repressor.
    Jana NK; Roy S; Bhattacharyya B; Mandal NC
    Protein Eng; 1999 Mar; 12(3):225-33. PubMed ID: 10235623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The primary self-assembly reaction of bacteriophage lambda cI repressor dimers is to octamer.
    Senear DF; Laue TM; Ross JB; Waxman E; Eaton S; Rusinova E
    Biochemistry; 1993 Jun; 32(24):6179-89. PubMed ID: 8512927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of bacteriophage lambda cI repressor: effects of single-site mutations on the monomer-dimer equilibrium.
    Burz DS; Beckett D; Benson N; Ackers GK
    Biochemistry; 1994 Jul; 33(28):8399-405. PubMed ID: 8031775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA sequence dependent and independent conformational changes in multipartite operator recognition by lambda-repressor.
    Deb S; Bandyopadhyay S; Roy S
    Biochemistry; 2000 Mar; 39(12):3377-83. PubMed ID: 10727231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-site mutations in the C-terminal domain of bacteriophage lambda cI repressor alter cooperative interactions between dimers adjacently bound to OR.
    Burz DS; Ackers GK
    Biochemistry; 1994 Jul; 33(28):8406-16. PubMed ID: 8031776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimer-dimer interfaces of the lambda-repressor are different in liganded and free states.
    Bandyopadhyay S; Mukhopadhyay C; Roy S
    Biochemistry; 1996 Apr; 35(15):5033-40. PubMed ID: 8664296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Half-of-the-sites reactivity of F235C lambda-repressor: implications for the structure of the whole repressor.
    Bandyopadhyay S; Deb S; Bose S; Roy S
    Protein Eng; 2002 May; 15(5):393-401. PubMed ID: 12034859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage lambda repressor.
    Hecht MH; Sturtevant JM; Sauer RT
    Proc Natl Acad Sci U S A; 1984 Sep; 81(18):5685-9. PubMed ID: 6237363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary structure and oligomerization behavior of equilibrium unfolding intermediates of the lambda cro repressor.
    Fabian H; Fälber K; Gast K; Reinstädler D; Rogov VV; Naumann D; Zamyatkin DF; Filimonov VV
    Biochemistry; 1999 Apr; 38(17):5633-42. PubMed ID: 10220352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of energetics of cooperative interaction using a mutant lambda-repressor.
    Jana NK; Deb S; Bhattacharyya B; Mandal NC; Roy S
    Protein Eng; 2000 Sep; 13(9):629-33. PubMed ID: 11054457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in lambda repressor's amino-terminal domain: implications for protein stability and DNA binding.
    Hecht MH; Nelson HC; Sauer RT
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2676-80. PubMed ID: 6221342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations defining the operator-binding sites of bacteriophage lambda repressor.
    Nelson HC; Hecht MH; Sauer RT
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():441-9. PubMed ID: 6222865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Papain does not cleave operator-bound lambda repressor: structural characterization of the carboxy terminal domain and the hinge.
    Ghosh K; Chattopadhyaya R
    J Biomol Struct Dyn; 2001 Feb; 18(4):557-67. PubMed ID: 11245251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operator binding by lambda repressor heterodimers with one or two N-terminal arms.
    Kim YI; Hu JC
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7510-4. PubMed ID: 7638221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An aromatic stacking interaction between subunits helps mediate DNA sequence specificity: operator site discrimination by phage lambda cI repressor.
    Huang YT; Rusinova E; Ross JB; Senear DF
    J Mol Biol; 1997 Mar; 267(2):403-17. PubMed ID: 9096234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of the repressor of bacteriophage lambda. II. Isolation and characterization of a lambda mutant which produces repressor having higher affinity for operators.
    Nag DK; Chattopadhyay DJ; Mandal NC
    Mol Gen Genet; 1984; 194(3):373-6. PubMed ID: 6234449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly cooperative DNA binding by the coliphage HK022 repressor.
    Carlson NG; Little JW
    J Mol Biol; 1993 Apr; 230(4):1108-30. PubMed ID: 8487297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-association and DNA binding of lambda cI repressor N-terminal domains reveal linkage between sequence-specific binding and the C-terminal cooperativity domain.
    Bain DL; Ackers GK
    Biochemistry; 1994 Dec; 33(49):14679-89. PubMed ID: 7993896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deuterium exchange of operator 8CH groups as a Raman probe of repressor recognition: interactions of wild-type and mutant lambda repressors with operator OL1.
    Reilly KE; Becka R; Thomas GJ
    Biochemistry; 1992 Mar; 31(12):3118-25. PubMed ID: 1532510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the lambda repressor C-terminal domain provides a model for cooperative operator binding.
    Bell CE; Frescura P; Hochschild A; Lewis M
    Cell; 2000 Jun; 101(7):801-11. PubMed ID: 10892750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.