These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1023921)

  • 1. [Electrical impedance measurements in the human body: electrode characteristics].
    Bernardi L; Fogari R
    Boll Soc Ital Biol Sper; 1976 Jul; 52(13):997-1003. PubMed ID: 1023921
    [No Abstract]   [Full Text] [Related]  

  • 2. [Electrical impedance measurements in the human body: comparison between bipolar and tetrapolar systems].
    Bernardi L; Fogari R
    Boll Soc Ital Biol Sper; 1976 Jul; 52(13):991-6. PubMed ID: 1023920
    [No Abstract]   [Full Text] [Related]  

  • 3. Imaging of conductivity changes and electrode movement in EIT.
    Soleimani M; Gómez-Laberge C; Adler A
    Physiol Meas; 2006 May; 27(5):S103-13. PubMed ID: 16636402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of emboli in vessels using electrical impedance measurements--phantom and electrodes.
    Nebuya S; Noshiro M; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2005 Apr; 26(2):S111-8. PubMed ID: 15798224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using compound electrodes in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):29-34. PubMed ID: 8468073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishability in impedance imaging.
    Cheney M; Isaacson D
    IEEE Trans Biomed Eng; 1992 Aug; 39(8):852-60. PubMed ID: 1505998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
    Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS
    Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography.
    Fournier-Desseux A; Jossinet J
    Physiol Meas; 2005 Aug; 26(4):337-49. PubMed ID: 15886430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Simulation study of line electrode for electrical impedance tomography].
    Wang Y; Sha H; Ren C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):986-9. PubMed ID: 18027681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid assessment of electrode characteristics for impedance imaging.
    Newell JC; Isaacson D; Gisser DG
    IEEE Trans Biomed Eng; 1990 Jul; 37(7):735-8. PubMed ID: 2394462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes.
    Gandhi SV; Walker DC; Brown BH; Anumba DO
    Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Importance of transitory electrical resistance in pulse electroplethysmography].
    Litoshko IA; Naumenko AI; Rafilov AM
    Fiziol Zh SSSR Im I M Sechenova; 1973 Dec; 59(12):1905-7. PubMed ID: 4790824
    [No Abstract]   [Full Text] [Related]  

  • 13. [Use of impedance plethysmography for studying the liver depositing function in an acute experiment].
    Tsybenko VA; Ianchuk PI; Simonenko PN
    Fiziol Zh (1978); 1984; 30(6):756-8. PubMed ID: 6519282
    [No Abstract]   [Full Text] [Related]  

  • 14. Four-point electrode measurement of impedance in the vicinity of bovine aorta for quasi-static frequencies.
    Stiles DK; Oakley BA
    Bioelectromagnetics; 2005 Jan; 26(1):54-8. PubMed ID: 15605396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Noninvasive ventilatory volume monitor using the electrical impedance method--elimination of impedance changes associated with cardiac oscillations].
    Itoh A; Kikuchi N; Ishida A; Okazaki N; Kira S
    Iyodenshi To Seitai Kogaku; 1982 Sep; 20(5):314-20. PubMed ID: 7182614
    [No Abstract]   [Full Text] [Related]  

  • 16. Workable volume and flow concepts of bio-segments by electrical impedance plethysmography.
    Nyboer J
    TIT J Life Sci; 1972; 2(1):1-13. PubMed ID: 4680960
    [No Abstract]   [Full Text] [Related]  

  • 17. A study of composite electrode-tissue impedance.
    Robinson RL; Davidson JL; Wright P; Pomfrett CJ; McCann H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1171-4. PubMed ID: 19162873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new geometric factor for in situ resistivity measurement using four slender cylindrical electrodes.
    Chong CE; Tan YL
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):594-602. PubMed ID: 18269995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum electrode configuration for detection of leg movement using bio-impedance.
    Song CG; Kim SC; Nam KC; Kim DW
    Physiol Meas; 2005 Apr; 26(2):S59-68. PubMed ID: 15798247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Possibilities of the rheoplethysmography method].
    Danilov EN; Rusanov GA; Petrash VV
    Vestn Khir Im I I Grek; 1978 Sep; 121(9):128-35. PubMed ID: 706094
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.