These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 1024310)

  • 21. A novel mathematical model identifies potential factors regulating bone apposition.
    Martin MJ; Buckland-Wright JC
    Calcif Tissue Int; 2005 Oct; 77(4):250-60. PubMed ID: 16193233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mathematical model of the mitotic cycle and its application to the interpretation of percentage labeled mitoses data.
    Barrett JC
    J Natl Cancer Inst; 1966 Oct; 37(4):443-50. PubMed ID: 5923498
    [No Abstract]   [Full Text] [Related]  

  • 23. [Method of mathematical description of the dynamics of cell population density].
    Verigo VV; Sushkov FV; Rudneva SV
    Kosm Biol Aviakosm Med; 1975; 9(5):3-6. PubMed ID: 1214487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [A mathematical model of postradiation autoimmunity].
    Smirnova OA
    Radiobiologiia; 1988; 28(3):331-5. PubMed ID: 2969598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer simulation of percent labeled mitoses curves. ANL-7535.
    Trucco E; Brockwell PJ; Fry RJ; Maclaren MD; Sacher GA
    ANL Rep; 1968 Dec; ():121-2. PubMed ID: 5306844
    [No Abstract]   [Full Text] [Related]  

  • 26. [Mathematical model of cyclic kinetics of granulocytopoiesis].
    Smirnova OA
    Kosm Biol Aviakosm Med; 1985; 19(1):77-80. PubMed ID: 3974189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of the cell kinetic effects of G-CSF using a model of human granulopoiesis.
    Schmitz S; Franke H; Brusis J; Wichmann HE
    Exp Hematol; 1993 Jun; 21(6):755-60. PubMed ID: 7684699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The technique of labelled mitoses: analysis by automatic curve-fitting.
    Steel GG; Hanes S
    Cell Tissue Kinet; 1971 Jan; 4(1):93-105. PubMed ID: 5116590
    [No Abstract]   [Full Text] [Related]  

  • 29. [Regulation of thrombocytopoiesis studied by a mathematical model].
    Selivanov VA; Tiazhelova VG
    Tsitologiia; 1984 Mar; 26(3):348-52. PubMed ID: 6729997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mathematical model for the effects of epidermal growth factor receptor trafficking dynamics on fibroblast proliferation responses.
    Starbuck C; Lauffenburger DA
    Biotechnol Prog; 1992; 8(2):132-43. PubMed ID: 1368006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Mathematical model of proliferative activity in epidermis of the normal skin and of the skin afflicted by psoriasis].
    Laptev MV; Nikulin NK
    Biofizika; 2003; 48(1):84-90. PubMed ID: 12630120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mathematical modeling of immobilized enzyme systems.
    Kernevez JP; Doedel EJ; Thomas D
    Biomed Biochim Acta; 1985; 44(6):993-1003. PubMed ID: 4038294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A cell-kinetics model for radiation-induced myelopoiesis.
    Jones TD; Morris MD; Young RW; Kehlet RA
    Exp Hematol; 1993 Jun; 21(6):816-22. PubMed ID: 8500579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A generalized mathematical model for the growth kinetics of Saccharomyces cerevisiae with experimental determination of parameters.
    Peringer P; Blachere H; Corrieu G; Lane AG
    Biotechnol Bioeng; 1974 Apr; 16(4):431-54. PubMed ID: 4604006
    [No Abstract]   [Full Text] [Related]  

  • 35. The mathematical properties of the quasi-chemical model for microorganism growth-death kinetics in foods.
    Ross EW; Taub IA; Doona CJ; Feeherry FE; Kustin K
    Int J Food Microbiol; 2005 Mar; 99(2):157-71. PubMed ID: 15734564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical modelling of avascular-tumour growth.
    Ward JP; King JR
    IMA J Math Appl Med Biol; 1997 Mar; 14(1):39-69. PubMed ID: 9080687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical model of dose-activity relationships.
    Franke R; Oehme P; Barth A
    Environ Qual Saf Suppl; 1975; 3():461-66. PubMed ID: 1063665
    [No Abstract]   [Full Text] [Related]  

  • 38. Angiogenesis - understanding the mathematical challenge.
    Jones PF; Sleeman BD
    Angiogenesis; 2006; 9(3):127-38. PubMed ID: 17051342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mathematical model for the cell age-dependent decline of creatine in human cell cells.
    Holzhütter HG; Syllm-Rapoport I; Daniel A
    Biomed Biochim Acta; 1984; 43(2):153-8. PubMed ID: 6732753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Calculation of Steel's cell loss factor and of the parameters of cellular kinetics for a population with an exponential growth of the cell number and cell death at G0 phase with a probability equal to 1].
    Gushchin VA
    Tsitologiia; 1984 Jul; 26(7):838-45. PubMed ID: 6485093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.