These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 102619)

  • 1. The relative biological effectiveness of 160 MeV protons. I. Microdosimetry.
    Kliauga PJ; Colvett RD; Lam YM; Rossi HH
    Int J Radiat Oncol Biol Phys; 1978; 4(11-12):1001-8. PubMed ID: 102619
    [No Abstract]   [Full Text] [Related]  

  • 2. Microdosimetry spectra and relative biological effectiveness of 15 and 30MeV proton beams.
    Pan CY; Huang YW; Cheng KH; Chao TC; Tung CJ
    Appl Radiat Isot; 2015 Mar; 97():101-105. PubMed ID: 25562679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative biological effectiveness for protons of energies up to 31 MeV.
    Bettega D; Birattari C; Bombana M; Fuhrman Conti AM; Gallini E; Pelucchi T; Tallone Lombardi L
    Radiat Res; 1979 Jan; 77(1):85-97. PubMed ID: 424516
    [No Abstract]   [Full Text] [Related]  

  • 4. The relative biological effectiveness of 160 MeV protons--II. Biological data and their interpretation in terms of microdosimetry.
    Hall EJ; Kellerer AM; Rossi HH; Lam YM
    Int J Radiat Oncol Biol Phys; 1978; 4(11-12):1009-13. PubMed ID: 721644
    [No Abstract]   [Full Text] [Related]  

  • 5. Microdosimetry distributions for 40-200 MeV protons.
    Palajová Z; Spurný F; Davídková M
    Radiat Prot Dosimetry; 2006; 121(4):376-81. PubMed ID: 16782987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Prospects for using superfast neutrons in radiation therapy].
    Zherbin EA; Obaturov GM; Kapchigashev SP
    Med Radiol (Mosk); 1979 Jun; 24(6):77-80. PubMed ID: 110995
    [No Abstract]   [Full Text] [Related]  

  • 7. Microdosimetry of a 42 MeV therapy neutron beam.
    Kliauga P; Horton J; Stafford P
    Int J Radiat Oncol Biol Phys; 1989 Mar; 16(3):845-8. PubMed ID: 2493437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The radiobiological and physical basis for radiotherapy with protons and heavier ions.
    Kraft G
    Strahlenther Onkol; 1990 Jan; 166(1):10-3. PubMed ID: 2154042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdosimetry spectra of the Loma Linda proton beam and relative biological effectiveness comparisons.
    Coutrakon G; Cortese J; Ghebremedhin A; Hubbard J; Johanning J; Koss P; Maudsley G; Slater CR; Zuccarelli C
    Med Phys; 1997 Sep; 24(9):1499-506. PubMed ID: 9304579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomedical program for the converted 200-MeV synchrocyclotron at the Gustaf Werner Institute.
    Larsson B
    Radiat Res Suppl; 1985; 8():S310-8. PubMed ID: 3003787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdosimetry of negative poins at LAMPF.
    Amols HI; Dicello JF; Lane TF; Pfeufer GW; Helland JA; Knowles HB
    Radiology; 1975 Jul; 116(1):183-5. PubMed ID: 806097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dosimetry of protons with 1000 MeV energy in medico-biological studies].
    Nizkovolos VB; Konnov BA; Senichev IIa; Karlin DL
    Med Radiol (Mosk); 1975 Jul; 20(7):19-24. PubMed ID: 811945
    [No Abstract]   [Full Text] [Related]  

  • 13. The relative biological effectiveness of the modulated proton beam at TRIUMF.
    Nemoto K; Pickles T; Minchinton AI; Lam GK
    Radiat Med; 1998; 16(1):43-6. PubMed ID: 9568632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiproton radiotherapy.
    Bassler N; Alsner J; Beyer G; DeMarco JJ; Doser M; Hajdukovic D; Hartley O; Iwamoto KS; Jäkel O; Knudsen HV; Kovacevic S; Møller SP; Overgaard J; Petersen JB; Solberg TD; Sørensen BS; Vranjes S; Wouters BG; Holzscheiter MH
    Radiother Oncol; 2008 Jan; 86(1):14-9. PubMed ID: 18158194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Studies on relative biological effectiveness and therapeutic gain factor of high energy protons modulated for radiotherapy].
    Satoh S; Inada T; Eguchi K; Tatsuzaki H; Kitagawa T; Hirokawa Y
    Nihon Igaku Hoshasen Gakkai Zasshi; 1986 May; 46(5):714-21. PubMed ID: 3020498
    [No Abstract]   [Full Text] [Related]  

  • 16. Optimization of external beam radiotherapy: quantitative study of relative radiation effects and isoeffect patterns using PC-12 computer.
    Mistry VD; DeGinder WL
    Int J Radiat Oncol Biol Phys; 1978; 4(11-12):1081-94. PubMed ID: 102624
    [No Abstract]   [Full Text] [Related]  

  • 17. Induction of micronuclei by irradiation with neutrons produced from 600 MeV protons.
    Diehl-Marshall I; Bianchi M
    Br J Radiol; 1981 Jun; 54(642):530-2. PubMed ID: 6263390
    [No Abstract]   [Full Text] [Related]  

  • 18. THE ROLE OF PARTICLE SPECTRA IN MODELING THE RELATIVE BIOLOGICAL EFFECTIVENESS OF PROTON RADIOTHERAPY BEAMS.
    Grzanka L; Waligórski MPR; Bassler N
    Radiat Prot Dosimetry; 2019 May; 183(1-2):251-254. PubMed ID: 30566667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Munich Therapy Project RENT.
    Koester L; Breit A; Burger G
    Strahlentherapie Sonderb; 1981; 77():214-9. PubMed ID: 6821000
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparative study of the effects of different radiation qualities on normal human breast cells.
    Juerß D; Zwar M; Giesen U; Nolte R; Kriesen S; Baiocco G; Puchalska M; van Goethem MJ; Manda K; Hildebrandt G
    Radiat Oncol; 2017 Sep; 12(1):159. PubMed ID: 28946898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.