These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 102632)

  • 1. Incorporation of 32Pi into nucleotides, polyphosphates, and other acid-soluble compounds by Myxococcus xanthus during myxospore formation.
    Maeba PY; Shipman R
    J Bacteriol; 1978 Dec; 136(3):1058-69. PubMed ID: 102632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcus xanthus during starvation and myxospore formation.
    Manoil C; Kaiser D
    J Bacteriol; 1980 Jan; 141(1):297-304. PubMed ID: 6766441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myxospore coat synthesis in Myxococcus xanthus: in vivo incorporation of acetate and glycine.
    Filer D; White D; Kindler SH; Rosenberg E
    J Bacteriol; 1977 Sep; 131(3):751-8. PubMed ID: 408325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular and extracellular nucleotides and related compounds during the development of Myxococcus xanthus.
    Hanson CW; Dworkin M
    J Bacteriol; 1974 May; 118(2):486-96. PubMed ID: 4364021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate accumulation during myxospore formation in Myxococcus xanthus.
    Bacon K; Clutter D; Kottel RH; Orlowski M; White D
    J Bacteriol; 1975 Dec; 124(3):1635-6. PubMed ID: 811652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus.
    McBride MJ; Zusman DR
    J Bacteriol; 1989 Nov; 171(11):6383-6. PubMed ID: 2509436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus.
    Singer M; Kaiser D
    Genes Dev; 1995 Jul; 9(13):1633-44. PubMed ID: 7628697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration of starvation- and glycerol-induced myxospore formation by prior heat shock in Myxococcus xanthus.
    Killeen KP; Nelson DR
    J Bacteriol; 1988 Nov; 170(11):5200-7. PubMed ID: 3141380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo purine synthesis in vegetative cells and myxospores of Myxococcus xanthus.
    Westby CA; Tsai WC
    J Bacteriol; 1974 Mar; 117(3):1099-107. PubMed ID: 4360538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and salvage of purines during cellular morphogenesis of Myxococcus xanthus.
    Tsai WC; Westby CA
    J Bacteriol; 1978 Nov; 136(2):582-7. PubMed ID: 101526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation and methylation of proteins during Myxococcus xanthus spore formation.
    Komano T; Brown N; Inouye S; Inouye M
    J Bacteriol; 1982 Jul; 151(1):114-8. PubMed ID: 6806237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CTP can replace GTP in reactions catalyzed by eukaryotic peptide elongation factor 1.
    Tuhácková Z; Havránek M; Hradec J
    FEBS Lett; 1984 Nov; 177(1):112-4. PubMed ID: 6568180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development.
    Manoil C; Kaiser D
    J Bacteriol; 1980 Jan; 141(1):305-15. PubMed ID: 6766442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of ribonucleoside triphosphate pools in influenza A virus-infected MDCK cells.
    Stridh S
    Arch Virol; 1983; 77(2-4):223-9. PubMed ID: 6639357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenylate energy charge during fruiting body formation by Myxococcus xanthus.
    Smith BA; Dworkin M
    J Bacteriol; 1980 Jun; 142(3):1007-9. PubMed ID: 6769905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myxospore coat synthesis in Myxococcus xanthus: enzymes associated with uridine 5'-diphosphate-N-acetylgalactosamine formation during myxospore development.
    Filer D; Kindler SH; Rosenberg E
    J Bacteriol; 1977 Sep; 131(3):745-50. PubMed ID: 19417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic adenosine 3',5'-monophosphate binding protein in developing myxospores of Myxococcus xanthus.
    Orlowski M
    Can J Microbiol; 1980 Aug; 26(8):905-11. PubMed ID: 6257359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Nucleoside-5'-triphosphate hydrolysis in the liver and kidney of rats with chronic alloxan diabetes].
    Rusina IM; Makarchikov AF; Makar EA; Kubyshin VL
    Biomed Khim; 2006; 52(4):364-9. PubMed ID: 17044594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide metabolism in the heart subjected to heat stress.
    Smolenski RT; Gray C; Jayakumar J; Amrani M; Yacoub MH
    Adv Exp Med Biol; 1998; 431():373-6. PubMed ID: 9598094
    [No Abstract]   [Full Text] [Related]  

  • 20. Myxococcus xanthus protein C is a major spore surface protein.
    McCleary WR; Esmon B; Zusman DR
    J Bacteriol; 1991 Mar; 173(6):2141-5. PubMed ID: 1900510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.