These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 102639)

  • 41. Expression of heterologous genes for wall teichoic acid in Bacillus subtilis 168.
    Karamata D; Pooley HM; Monod M
    Mol Gen Genet; 1987 Apr; 207(1):73-81. PubMed ID: 3110561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell wall turnover in growing and nongrowing cultures of Bacillus subtilis.
    de Boer WR; Meyer PD; Jordens CG; Kruyssen FJ; Wouters JT
    J Bacteriol; 1982 Mar; 149(3):977-84. PubMed ID: 6801017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The regulation of synthesis of wall polymers and of wall assembly in Bacillus.
    Hancock IC
    Biochem Soc Trans; 1985 Dec; 13(6):994-6. PubMed ID: 3937757
    [No Abstract]   [Full Text] [Related]  

  • 44. [Electrical properties and interaction with silicon dioxide particles of Bacillus subtilis cells].
    Gordienko AS; Kurdish IK
    Biofizika; 2007; 52(2):314-7. PubMed ID: 17477060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PhoR autokinase activity is controlled by an intermediate in wall teichoic acid metabolism that is sensed by the intracellular PAS domain during the PhoPR-mediated phosphate limitation response of Bacillus subtilis.
    Botella E; Devine SK; Hubner S; Salzberg LI; Gale RT; Brown ED; Link H; Sauer U; Codée JD; Noone D; Devine KM
    Mol Microbiol; 2014 Dec; 94(6):1242-59. PubMed ID: 25315493
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23.
    Yokoyama K; Miyashita T; Araki Y; Ito E
    Eur J Biochem; 1986 Dec; 161(2):479-89. PubMed ID: 3096735
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacteriophage resistance in Bacillus subtilis 168, W23, and interstrain transformants.
    Yasbin RE; Maino VC; Young FE
    J Bacteriol; 1976 Mar; 125(3):1120-6. PubMed ID: 815237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids.
    Lazarevic V; Karamata D
    Mol Microbiol; 1995 Apr; 16(2):345-55. PubMed ID: 7565096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro synthesis of the unit that links teichoic acid to peptidoglycan.
    Hancock I; Baddiley J
    J Bacteriol; 1976 Mar; 125(3):880-6. PubMed ID: 815251
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacteria's different ways to recycle their own cell wall.
    Mayer C; Kluj RM; Mühleck M; Walter A; Unsleber S; Hottmann I; Borisova M
    Int J Med Microbiol; 2019 Nov; 309(7):151326. PubMed ID: 31296364
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: its biosynthetic pathway and mode of attachment to peptidoglycan.
    Freymond PP; Lazarevic V; Soldo B; Karamata D
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1709-1718. PubMed ID: 16735734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blocking of bacteriophage receptor sites by Concanavalin A.
    Archibald AR; Coapes HE
    J Gen Microbiol; 1972 Dec; 73(3):581-5. PubMed ID: 4266463
    [No Abstract]   [Full Text] [Related]  

  • 53. Lipid intermediate in the synthesis of the linkage unit that joins teichoic acid to peptidoglycan in Bacillus subtilis.
    Hancock IC; Wiseman G; Baddiley J
    J Bacteriol; 1981 Aug; 147(2):698-701. PubMed ID: 6790521
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of teichoic acid biosynthesis regulation reveals that the extracytoplasmic function sigma factor sigmaM is induced by phosphate depletion in Bacillus subtilis W23.
    Minnig K; Lazarevic V; Soldo B; Mauël C
    Microbiology (Reading); 2005 Sep; 151(Pt 9):3041-3049. PubMed ID: 16151214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [The role of teichoic acids in the regulation of biochemical processes in microorganisms].
    Naumova IB
    Biokhimiia; 1978 Feb; 43(2):195-207. PubMed ID: 417744
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of teichoic and teichuronic acid biosynthesis in Bacillus subtilis 168trp. Evidence for repression of enzyme synthesis and inhibition of enzyme activity.
    Rosenberger RF
    Biochim Biophys Acta; 1976 Apr; 428(2):516-24. PubMed ID: 819032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis.
    Formstone A; Carballido-López R; Noirot P; Errington J; Scheffers DJ
    J Bacteriol; 2008 Mar; 190(5):1812-21. PubMed ID: 18156271
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of carbon source and growth rate on cell wall composition of Bacillus subtilis subsp. niger.
    Kruyssen FJ; de Boer WR; Wouters JT
    J Bacteriol; 1980 Oct; 144(1):238-46. PubMed ID: 6774960
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation.
    Lazarevic V; Abellan FX; Möller SB; Karamata D; Mauël C
    Microbiology (Reading); 2002 Mar; 148(Pt 3):815-24. PubMed ID: 11882717
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of autolysins in teichuronic acid-containing Bacillus subtilis cells.
    Calamita HG; Doyle RJ
    Mol Microbiol; 2002 May; 44(3):601-6. PubMed ID: 11994144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.