These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 1026886)

  • 1. [Formation of the respiratory enzyme apparatus in growing cells. IV. Composition of mitochondrial proteins synthesized in developing and germinating corn seeds].
    Ivanov VN; Khavkin KE
    Ontogenez; 1976; 7(5):512-20. PubMed ID: 1026886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Formation of the respiratory enzyme apparatus in plant cells. III. Antigenic spectra of mitochondria in the root tip of corn].
    Ivanov VN; Misharin SI; Khavkin EE
    Ontogenez; 1974; 5(5):492-500. PubMed ID: 4219954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of the enzymatic apparatus of respiration in growing cells. Communication II. Reorganization of the respiratory cycle of mitochondria in the corn root tip.
    Varakina NN; Zeleneva IV; Polikarpochkina RT; Khavkin EE
    Sov J Dev Biol; 1975 Jan; 5(1):52-9. PubMed ID: 163496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in different protein fractions and their amino acid composition of the endosperm of opaque-2 composite maize, Shakti, during maturation.
    Ahuja VP; Srivastava KN; Austin A; Naik MS
    Indian J Biochem Biophys; 1973 Mar; 10(1):48-50. PubMed ID: 4778116
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of microgravity on cellular differentiation in root caps of Zea mays.
    Moore R; Fondren WM; McClelen CE; Wang CL
    Am J Bot; 1987 Jul; 74(7):1006-12. PubMed ID: 11539036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of amylose accumulation during seed development in maize.
    Guo SJ; Li JR; Qiao WH; Zhang XS
    Yi Chuan Xue Bao; 2006 Nov; 33(11):1014-9. PubMed ID: 17112973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize ( Zea mays L.).
    Zhang S; Wong L; Meng L; Lemaux PG
    Planta; 2002 Jun; 215(2):191-4. PubMed ID: 12029467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation.
    Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F
    J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the mitochondrial proteome of developing maize seed embryos.
    Wang WQ; Wang Y; Zhang Q; Møller IM; Song SQ
    Physiol Plant; 2018 Aug; 163(4):552-572. PubMed ID: 29575040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds.
    Shi J; Wang H; Hazebroek J; Ertl DS; Harp T
    Plant J; 2005 Jun; 42(5):708-19. PubMed ID: 15918884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutational approach to the study of seed development in maize.
    Dolfini S; Consonni G; Viotti C; Dal Prà M; Saltini G; Giulini A; Pilu R; Malgioglio A; Gavazzi G
    J Exp Bot; 2007; 58(5):1197-205. PubMed ID: 17244631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maize mitochondria synthesize organ-specific polypeptides.
    Newton KJ; Walbot V
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6879-83. PubMed ID: 3863132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein distribution in commercial wet- and dry-milled corn germ.
    Parris N; Moreau RA; Johnston DB; Singh V; Dickey LC
    J Agric Food Chem; 2006 Jun; 54(13):4868-72. PubMed ID: 16787041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures.
    Yin G; Sun H; Xin X; Qin G; Liang Z; Jing X
    Plant Cell Physiol; 2009 Jul; 50(7):1305-18. PubMed ID: 19520672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize embryogenesis.
    Fontanet P; Vicient CM
    Methods Mol Biol; 2008; 427():17-29. PubMed ID: 18369994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WOX gene phylogeny in Poaceae: a comparative approach addressing leaf and embryo development.
    Nardmann J; Zimmermann R; Durantini D; Kranz E; Werr W
    Mol Biol Evol; 2007 Nov; 24(11):2474-84. PubMed ID: 17768306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric localization of seed storage protein RNAs to distinct subdomains of the endoplasmic reticulum in developing maize endosperm cells.
    Washida H; Sugino A; Messing J; Esen A; Okita TW
    Plant Cell Physiol; 2004 Dec; 45(12):1830-7. PubMed ID: 15653801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of gibberellic acid and abscisic acid on RNA synthesis in maize seed scutellum.
    Wielgat B; Kleczkowski K
    Acta Biochim Pol; 1974; 21(4):437-43. PubMed ID: 4446888
    [No Abstract]   [Full Text] [Related]  

  • 19. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.).
    Hochholdinger F; Woll K; Guo L; Schnable PS
    Proteomics; 2005 Dec; 5(18):4885-93. PubMed ID: 16247731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretranslational control of the levels of glyoxysomal protein gene expression by the embryonic axis in maize.
    Skadsen RW; Scandalios JG
    Dev Genet; 1989; 10(1):1-10. PubMed ID: 2702785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.