These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 1028159)
1. Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism III. Isolation and characterization of a mutant unable to convert IMP to AMP. Patterson D Somatic Cell Genet; 1976 Jan; 2(1):41-53. PubMed ID: 1028159 [TBL] [Abstract][Full Text] [Related]
2. Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism. VI. Enzymatic studies of two mutants unable to convert inosinic acid to adenylic acid. Tu AS; Patterson D Biochem Genet; 1977 Feb; 15(1-2):195-210. PubMed ID: 849250 [TBL] [Abstract][Full Text] [Related]
3. Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism. IV. Isolation of a mutant which accumulates adenylosuccinic acid and succinylaminoimidazole carboxamide ribotide. Patterson D Somatic Cell Genet; 1976 May; 2(3):189-203. PubMed ID: 1028168 [TBL] [Abstract][Full Text] [Related]
4. Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism: isolation and characterization of a mutant deficient in the activity of phosphoribosylaminoimidazole synthetase. Irwin M; Oates DC; Patterson D Somatic Cell Genet; 1979 Mar; 5(2):203-16. PubMed ID: 483121 [TBL] [Abstract][Full Text] [Related]
5. AMP deamination and IMP reamination in working skeletal muscle. Meyer RA; Terjung RL Am J Physiol; 1980 Jul; 239(1):C32-8. PubMed ID: 7395984 [TBL] [Abstract][Full Text] [Related]
6. Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism: isolation, selection, and characterization of a mutant lacking hypoxanthine-guanine phosphoribosyltransferase activity by nutritional means. Patterson D; Jones C Somatic Cell Genet; 1976 Sep; 2(5):429-39. PubMed ID: 800293 [TBL] [Abstract][Full Text] [Related]
7. Alanosine toxicity in Novikoff rat hepatoma cells due to inhibition of the conversion of inosine monophosphate to adenosine monophosphate. Graff JC; Plagemann PG Cancer Res; 1976 Apr; 36(4):1428-40. PubMed ID: 177207 [TBL] [Abstract][Full Text] [Related]
8. Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism: characterization of Chinese hamster cell mutants defective in phosphoribosylpyrophosphate amidotransferase and phosphoribosylglycinamide synthetase and an examination of alternatives to the first step of purine biosynthesis. Oates DC; Patterson D Somatic Cell Genet; 1977 Nov; 3(6):561-77. PubMed ID: 564086 [TBL] [Abstract][Full Text] [Related]
9. Mutants of chinese hamster cells resistant to adenosine. McBurney MW; Whimore GF J Cell Physiol; 1975 Feb; 85(1):87-99. PubMed ID: 162911 [TBL] [Abstract][Full Text] [Related]
10. Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism: biochemical analysis of eight mutants. Patterson D Somatic Cell Genet; 1975 Jan; 1(1):91-110. PubMed ID: 1235902 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a guanine-sensitive mutant defective in adenylo-succinate synthetase activity. Tu AS; Patterson D J Cell Physiol; 1978 Jul; 96(1):123-32. PubMed ID: 659517 [TBL] [Abstract][Full Text] [Related]
12. Effect of hadacidin on growth and adenylosuccinate synthetase activity of Dictyostelium discoideum. Rossomando EF; Maldonado B; Crean EV Antimicrob Agents Chemother; 1978 Sep; 14(3):476-82. PubMed ID: 568451 [TBL] [Abstract][Full Text] [Related]
13. A gene correcting the defect in the CHO mutant Ade -H, deficient in a branch point enzyme (adenylosuccinate synthetase) of de novo purine biosynthesis, is located on the long arm of chromosome 1. Lai LW; Hart IM; Patterson D Genomics; 1991 Feb; 9(2):322-8. PubMed ID: 2004783 [TBL] [Abstract][Full Text] [Related]
14. Isolation of a human cDNA encoding amidophosphoribosyltransferase and functional complementation of a CHO Ade-A mutant deficient in this activity. Barton JW; Bleskan J; Patterson D Somat Cell Mol Genet; 1991 May; 17(3):311-22. PubMed ID: 2047942 [TBL] [Abstract][Full Text] [Related]
16. A somatic cell hybrid with a single human chromosome 22 corrects the defect in the CHO mutant (Ade-I) lacking adenylosuccinase activity. Van Keuren ML; Hart IM; Kao FT; Neve RL; Bruns GA; Kurnit DM; Patterson D Cytogenet Cell Genet; 1987; 44(2-3):142-7. PubMed ID: 3568763 [TBL] [Abstract][Full Text] [Related]
17. Mapping of the bovine genes of the de novo AMP synthesis pathway. Bønsdorff T; Gautier M; Farstad W; Rønningen K; Lingaas F; Olsaker I Anim Genet; 2004 Dec; 35(6):438-44. PubMed ID: 15566465 [TBL] [Abstract][Full Text] [Related]
18. Purine metabolism in neisseria meningitidis. 4. Interconversion of purine ribonucleotides. Jyssum S; Jyssum K Acta Pathol Microbiol Scand B; 1975 Oct; 83(5):407-15. PubMed ID: 809994 [TBL] [Abstract][Full Text] [Related]
19. Expression of a human cDNA encoding a protein containing GAR synthetase, AIR synthetase, and GAR transformylase corrects the defects in mutant Chinese hamster ovary cells lacking these activities. Chang FH; Barnes TS; Schild D; Gnirke A; Bleskan J; Patterson D Somat Cell Mol Genet; 1991 Jul; 17(4):411-20. PubMed ID: 1887337 [TBL] [Abstract][Full Text] [Related]
20. Characterization of purine nucleotide metabolism in primary rat cardiomyocyte cultures. Zoref-Shani E; Kessler-Icekson G; Wasserman L; Sperling O Biochim Biophys Acta; 1984 Jun; 804(2):161-8. PubMed ID: 6326848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]