These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1028192)

  • 1. The formation and interpretation of defect images from crystalline materials in a scanning transmission electron microscope.
    Maher DM; Joy DC
    Ultramicroscopy; 1976 Jun; 1(3):239-53. PubMed ID: 1028192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thick specimens in the CEM and STEM. Resolution and image formation.
    Groves T
    Ultramicroscopy; 1975 Jul; 1(1):15-31. PubMed ID: 1236017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image formation in the scanning transmission electron microscope using object-conjugate detectors.
    Dwyer C; Lazar S; Chang LY; Etheridge J
    Acta Crystallogr A; 2012 Mar; 68(Pt 2):196-207. PubMed ID: 22338655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.
    Morgan DG; Ramasse QM; Browning ND
    J Electron Microsc (Tokyo); 2009 Jun; 58(3):223-44. PubMed ID: 19297343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aperture contrast in thick amorphous specimens using scanning transmission electron microscopy.
    Smith DJ; Cowley JM
    Ultramicroscopy; 1975 Dec; 1(2):127-36. PubMed ID: 1236025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in contrast of scanning electron microscope images for microstructure analysis of Si-based semiconductor materials.
    Itakura M; Kuwano N; Sato K; Tachibana S
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S165-73. PubMed ID: 20554753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.
    Sun C; Müller E; Meffert M; Gerthsen D
    Microsc Microanal; 2018 Apr; 24(2):99-106. PubMed ID: 29589573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications.
    Winkelmann A; Nolze G; Vespucci S; Naresh-Kumar G; Trager-Cowan C; Vilalta-Clemente A; Wilkinson AJ; Vos M
    J Microsc; 2017 Sep; 267(3):330-346. PubMed ID: 28474742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of electronically controlled illumination in the conventional transmission electron microscope.
    Krakow W
    Ultramicroscopy; 1978; 3(3):291-301. PubMed ID: 734785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional visualization of dislocations in a ferromagnetic material by magnetic-field-free electron tomography.
    Hasezaki KL; Saito H; Sannomiya T; Miyazaki H; Gondo T; Miyazaki S; Hata S
    Ultramicroscopy; 2017 Nov; 182():249-257. PubMed ID: 28779615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope.
    Hieckmann E; Nacke M; Allardt M; Bodrov Y; Chekhonin P; Skrotzki W; Weber J
    J Vis Exp; 2016 May; (111):. PubMed ID: 27285177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The extension of scanning transmission electron microscopy by use of diffraction information.
    Cowley JM
    Ultramicroscopy; 1976 Jun; 1(3):255-62. PubMed ID: 1028193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission scanning electron microscopy: Defect observations and image simulations.
    Callahan PG; Stinville JC; Yao ER; Echlin MP; Titus MS; De Graef M; Gianola DS; Pollock TM
    Ultramicroscopy; 2018 Mar; 186():49-61. PubMed ID: 29268135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector.
    Serralta E; Klingner N; De Castro O; Mousley M; Eswara S; Duarte Pinto S; Wirtz T; Hlawacek G
    Beilstein J Nanotechnol; 2020; 11():1854-1864. PubMed ID: 33364144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning electron microscope observation of dislocations in semiconductor and metal materials.
    Kuwano N; Itakura M; Nagatomo Y; Tachibana S
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S175-81. PubMed ID: 20595187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic resolution imaging using the real-space distribution of electrons scattered by a crystalline material.
    Lazar S; Etheridge J; Dwyer C; Freitag B; Botton GA
    Acta Crystallogr A; 2011 Sep; 67(Pt 5):487-90. PubMed ID: 21844654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimization of dose as a criterion for the selection of imaging modes in electron microscopy of amorphous specimens.
    Lamvik MK; Groves T
    Ultramicroscopy; 1976 Dec; 2(1):69-75. PubMed ID: 1028210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice imaging in low-angle and high-angle bright-field scanning transmission electron microscopy.
    Watanabe K; Kikuchi Y; Yamazaki T; Asano E; Nakanishi N; Kotaka Y; Okunishi E; Hashimoto I
    Acta Crystallogr A; 2004 Nov; 60(Pt 6):591-7. PubMed ID: 15507742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computation of contrasts in atomic resolution electron spectroscopic images of planar defects in crystalline specimens.
    Navidi-Kasmai T; Kohl H
    Ultramicroscopy; 2000 Apr; 81(3-4):223-33. PubMed ID: 10782646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.