These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1028199)

  • 1. Use of coincidence techniques to improve the detection limits of electron spectroscopy in STEM.
    Wittry DB
    Ultramicroscopy; 1976; 1(4):297-300. PubMed ID: 1028199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic core level microanalyses and microcopies in multipurpose apparatus.
    Cazaux J; Gramari D; Jbara O; Mouze D; Nassiopoulos A; Thomas X
    J Electron Microsc Tech; 1989 Mar; 11(3):222-9. PubMed ID: 2723803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microanalysis of light elements using transmitted energy loss electrons.
    Isaacson M
    Ultramicroscopy; 1975 Jul; 1(1):33-52. PubMed ID: 1236018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in electron energy loss analysis for biological specimens.
    Cosslett VE
    Scan Electron Microsc; 1980; (Pt 2):575-82, 534. PubMed ID: 6999609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of X-rays and electron energy loss events in time coincidence.
    Kruit P; Shuman H; Somlyo AP
    Ultramicroscopy; 1984; 13(3):205-14. PubMed ID: 6485129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass determination of thin biological specimens using backscattered electrons. Application in quantitative X-ray microanalysis on an automated STEM system.
    Linders PW; Hagemann P
    Ultramicroscopy; 1983; 11(1):13-9. PubMed ID: 6612893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elemental microanalysis of biological specimens.
    Roomans GM; Wroblewski J; Wróblewski R
    Scanning Microsc; 1988 Jun; 2(2):937-46. PubMed ID: 3399859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of fast secondary electrons on x-ray microanalysis in the scanning electron microscope.
    Gauvin R; Hovington P; Drouin D
    Scanning; 1999; 21(4):238-45. PubMed ID: 10483878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositional mapping in biology: X rays and electrons.
    Somlyo AP
    J Ultrastruct Res; 1984 Aug; 88(2):135-42. PubMed ID: 6544876
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis of electron energy loss spectra for the quantification of detection limits.
    Menon NK; Krivanek OL
    Microsc Microanal; 2002 Jun; 8(3):203-15. PubMed ID: 12533236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning transmission electron microscope (STEM) elemental mapping by electron energy-loss spectroscopy.
    Leapman RD
    Ann N Y Acad Sci; 1986; 483():326-38. PubMed ID: 3551725
    [No Abstract]   [Full Text] [Related]  

  • 12. Specimen damage considerations in biological microprobe analysis.
    Kirz J
    Scan Electron Microsc; 1980; (Pt 2):239-49. PubMed ID: 6252602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measures for spectral quality in low-voltage X-ray microanalysis.
    Newbury DE
    Scanning; 2000; 22(6):345-51. PubMed ID: 11145259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreparation of mammalian tissue for X-ray microanalysis in STEM.
    Zierold K
    J Microsc; 1982 Feb; 125(Pt 2):149-56. PubMed ID: 7086879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron probe microanalysis of biological soft tissues: principle and technique.
    Lechene C
    Fed Proc; 1980 Sep; 39(11):2871-80. PubMed ID: 7409208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice-resolution contrast from a focused coherent electron probe. Part I.
    Allen LJ; Findlay SD; Oxley MP; Rossouw CJ
    Ultramicroscopy; 2003 Jul; 96(1):47-63. PubMed ID: 12623171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulae for light-element microanalysis by electron energy-loss spectrometry.
    Egerton RF
    Ultramicroscopy; 1978; 3(2):243-51. PubMed ID: 695137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass determination of thin biological specimens for use in quantitative electron probe X-ray microanalysis.
    Linders PW; Stols AL; van de Vorstenbosch RA; Stadhouders AM
    Scan Electron Microsc; 1982; (Pt 4):1603-15. PubMed ID: 7184142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge-related problems associated with X-ray microanalysis in the variable pressure scanning electron microscope at low pressures.
    Griffin BJ; Suvorova AA
    Microsc Microanal; 2003 Apr; 9(2):155-65. PubMed ID: 12639242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scattered electrons in microscopy and microanalysis.
    Ottensmeyer FP
    Science; 1982 Jan; 215(4532):461-6. PubMed ID: 7054874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.