These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 102888)

  • 1. Effects of haloperidol and probenecid on plasma and CSF dopamine metabolites in the rhesus monkey (Macacca mulatta).
    Bacopoulos NG; Heninger GR; Roth RH
    Life Sci; 1978 Oct; 23(17-18):1805-12. PubMed ID: 102888
    [No Abstract]   [Full Text] [Related]  

  • 2. A model of dopamine metabolism in rat brain, assessed by the influence of drugs [proceedings].
    Dedek J; Gomeni R; Korf J
    Arch Int Physiol Biochim; 1979 Oct; 87(4):794-5. PubMed ID: 93908
    [No Abstract]   [Full Text] [Related]  

  • 3. Conjugated 3,4 dihydroxy phenyl acetic acid (DOPAC) in human and monkey cerebrospinal fluid and rat brain and the effects of probenecid treatment.
    Gordon EK; Markey SP; Sherman RL; Kopin IJ
    Life Sci; 1976 Jun; 18(11):1285-92. PubMed ID: 819753
    [No Abstract]   [Full Text] [Related]  

  • 4. Atropine manipulation of elevated cerebral dopamine turnover caused by haloperidol or substituted benzamide drugs.
    Elliott PN; Jenner P; Marsden CD
    J Pharm Pharmacol; 1978 Dec; 30(12):788-91. PubMed ID: 32246
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of probenecid on endogenous and exogenous 3,4-dihydroxyphenylacetic acid and homovanillic acid in the rat brain.
    Broch OJ
    Eur J Pharmacol; 1976 Sep; 39(1):33-40. PubMed ID: 964303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple, sensitive method for measuring 3,4-dihydroxyphenylacetic acid and homovanillic acid in rat brain tissue using high-performance liquid chromatography with electrochemical detection.
    Hefti F
    Life Sci; 1979 Aug; 25(9):775-81. PubMed ID: 491856
    [No Abstract]   [Full Text] [Related]  

  • 7. Dopamine metabolites and catalepsy after lithium and haloperidol.
    Bowers MB; Rozitis A
    Eur J Pharmacol; 1982 Feb; 78(1):113-5. PubMed ID: 7200429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of various centrally acting drugs on the efflux of dopamine metabolites from the rat brain.
    Westerink BH; Kikkert RJ
    J Neurochem; 1986 Apr; 46(4):1145-52. PubMed ID: 3950621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional sensitivity of primate brain dopaminergic neurons to haloperidol: alterations following chronic treatment.
    Bacopoulos NG; Bustos G; Redmond DE; Baulu J; Roth RH
    Brain Res; 1978 Nov; 157(2):396-401. PubMed ID: 31230
    [No Abstract]   [Full Text] [Related]  

  • 10. Developmental change in striatal concentration of homovanillic acid and 3,4-dihydroxyphenylacetic acid in response to apomorphine and haloperidol treatment.
    Nomura Y; Komori T; Okuda S; Segawa T
    Arch Int Pharmacodyn Ther; 1979 Jan; 237(1):25-30. PubMed ID: 485682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular distribution of dopamine metabolites and their elimination from the rat brain.
    Francis LP; Broch OJ; Monge P; Solheim E
    Neuropharmacology; 1980 Mar; 19(3):269-76. PubMed ID: 7422080
    [No Abstract]   [Full Text] [Related]  

  • 12. Homovanillic acid transport by the spinal cord.
    Kessler JA; Fenstermacher JD; Patlak CS
    Neurology; 1976 May; 26(5):434-40. PubMed ID: 817223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating role of lithium on dopamine turnover, prolactin release, and behavioral supersensitivity following haloperidol and reserpine.
    McIntyre IM; Kuhn C; Demitriou S; Fucek FR; Stanley M
    Psychopharmacology (Berl); 1983; 81(2):150-4. PubMed ID: 6415746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tolerance develops to the haloperidol-induced increase in the efflux of dopamine metabolites from the brains of unanesthetized, freely-moving rats.
    Nielsen JA; Duda NJ; Moore KE
    Life Sci; 1982 Oct; 31(14):1495-1500. PubMed ID: 6183554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apomorphine-haloperidol interactions: different types of antagonism in cortical and subcortical brain regions.
    Bacopoulos NG; Roth RH
    Brain Res; 1981 Feb; 205(2):313-9. PubMed ID: 7470869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relation between haloperidol-induced alterations in DA release and DA metabolism in rat striatum.
    Moleman P; Bruinvels J; van Valkenburg CF
    Life Sci; 1978 Aug; 23(6):611-5. PubMed ID: 692284
    [No Abstract]   [Full Text] [Related]  

  • 17. Chronic haloperidol or fluphenazine: effects on dopamine metabolism in brain, cerebrospinal fluid and plasma of Cercopithecus aethiops (vervet monkey).
    Bacopoulos NG; Redmond DE; Baulu J; Roth RH
    J Pharmacol Exp Ther; 1980 Jan; 212(1):1-5. PubMed ID: 6766186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of dopamine-containing amacrine cells of retina: light-induced increase of acidic dopamine metabolites.
    Cohen J; Hadjiconstantinou M; Neff NH
    Brain Res; 1983 Jan; 260(1):125-7. PubMed ID: 6297678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of alpha-methyl fluorodopa on dopamine metabolites: importance of conjugation and egress.
    Sarna GS; Hutson PH; Curzon G
    Eur J Pharmacol; 1984 May; 100(3-4):343-50. PubMed ID: 6203763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats.
    Scally MC; Ulus I; Wurtman RJ
    J Neural Transm; 1977; 41(1):1-6. PubMed ID: 21228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.