These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 10290)
1. The structure and function of acid proteases. V. Comparative studies on the specific inhibition of acid proteases by diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(p-nitrophenoxy) propane and pepstatin. Takahashi K; Chang WJ J Biochem; 1976 Sep; 80(3):497-506. PubMed ID: 10290 [TBL] [Abstract][Full Text] [Related]
2. The structure and function of acid proteases. IV. Inactivation of the acid protease from Mucor pusillus by acid protease-specific inhibitors. Takahashi K; Chang WJ; Arima K J Biochem; 1976 Jul; 80(1):61-7. PubMed ID: 9381 [TBL] [Abstract][Full Text] [Related]
3. The structure and function of acid proteases. VI. Effects of acid protease-specific inhibitors on the acid proteases from Aspergillus niger var. macrosporus. Chang WJ; Horiuchi S; Takahashi K; Yamasaki M; Yamada Y J Biochem; 1976 Nov; 80(5):975-81. PubMed ID: 12156 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional determinants of Mucor miehei protease VI. Inactivation of the enzyme by diazoacetyl norleucine methyl esters, pepstatin and 1,2-epoxy-30(p-nitro-phenyoxy)propane. Rickert WS; McBride-Warren PA Biochim Biophys Acta; 1977 Jan; 480(1):262-74. PubMed ID: 831836 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of the acid proteinase from Neurospora crassa by diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(4-nitrophenoxy)propane and pepstatin. Kaehn K; Morr M; Kula MR Hoppe Seylers Z Physiol Chem; 1979 Jun; 360(6):791-4. PubMed ID: 38198 [No Abstract] [Full Text] [Related]
6. Pepsinogen C and pepsin C from gastric mucosa of Japanese monkey. Purification and characterization. Kageyama T; Takahashi K J Biochem; 1976 Nov; 80(5):983-92. PubMed ID: 12157 [TBL] [Abstract][Full Text] [Related]
7. The structure and function of acid proteases. IX. Isolation and amino acid sequences of the peptides containing the active site aspartyl residues reactive with diazoacetyl-DL-norleucine methyl ester and 1,2-epoxy-3-(p-nitrophenoxy)propane in Rhizopus chinensis acid protease. Nakamura S; Takahashi K J Biochem; 1978 Dec; 84(6):1593-600. PubMed ID: 739006 [No Abstract] [Full Text] [Related]
8. The structure and function of acid proteases. VIII. Purification and characterization of cathepsins D from Japanese monkey lung. Moriyama A; Takahashi K J Biochem; 1978 Feb; 83(2):441-51. PubMed ID: 24623 [TBL] [Abstract][Full Text] [Related]
9. Purification and properties of a pepstatin-insensitive carboxyl proteinase from a gram-negative bacterium. Oda K; Sugitani M; Fukuhara K; Murao S Biochim Biophys Acta; 1987 Mar; 923(3):463-9. PubMed ID: 3548827 [TBL] [Abstract][Full Text] [Related]
10. Amino acid sequences around 1, 2-epoxy-3-(p-nitrophenoxy)propane-reactive residues in rhizopus chinensis acid protease: homology with pepsin and rennin. Nakamura S; Takahashi K J Biochem; 1977 Mar; 81(3):805-7. PubMed ID: 16879 [TBL] [Abstract][Full Text] [Related]
11. The effect of acid proteinase inhibitors on chicken pepsin. Llewellin JM; Green ML Biochem J; 1975 Nov; 151(2):319-26. PubMed ID: 3165 [TBL] [Abstract][Full Text] [Related]
12. Specific inhibition of acid proteases from brain, kidney, skeletal muscle, and insectivorous plants by diazoacetyl-DL-norleucine methyl ester and by pepstatin. Takahashi K; Chang W; Ko J J Biochem; 1974 Oct; 76(4):897-9. PubMed ID: 4436292 [No Abstract] [Full Text] [Related]
13. Characterisation of a thermostable pepstatin-insensitive acid proteinase from a Bacillus sp. Prescott M; Peek K; Daniel RM Int J Biochem Cell Biol; 1995 Jul; 27(7):729-39. PubMed ID: 7648429 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of acid proteases from Rhizopus chinensis, Aspergillus saitoi and Mucor pusillus, and calf rennin by diazoactylnorleucine methyl ester. Takahashi K; Mizobe F; Change WJ J Biochem; 1972 Jan; 71(1):161-4. PubMed ID: 4552474 [No Abstract] [Full Text] [Related]
15. Subsite preferences of pepstatin-insensitive carboxyl proteinases from prokaryotes: kumamolysin, a thermostable pepstatin-insensitive carboxyl proteinase. Oda K; Ogasawara S; Oyama H; Dunn BM J Biochem; 2000 Sep; 128(3):499-507. PubMed ID: 10965051 [TBL] [Abstract][Full Text] [Related]
16. Effects of acid proteinase inhibitors on human neutrophil chemotaxis and lysosomal enzyme release. II. Bromphenacyl bromide and 1,2-epoxy-3-(p-nitrophenoxy)propane. Ackerman SK; Matter L; Douglas SD Clin Immunol Immunopathol; 1983 Feb; 26(2):213-22. PubMed ID: 6872342 [TBL] [Abstract][Full Text] [Related]
17. Identification of carboxyl residues in pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. 101 that participate in catalysis and substrate binding. Ito M; Narutaki S; Uchida K; Oda K J Biochem; 1999 Jan; 125(1):210-6. PubMed ID: 9880819 [TBL] [Abstract][Full Text] [Related]
18. Acid proteases. I. Inactivation of Cladosporium acid protease by diazoacetyl-DL-norleucine methyl ester as an active-site-directed irreversible inhibitor. Kanazawa H J Biochem; 1977 Jun; 81(6):1739-44. PubMed ID: 19445 [No Abstract] [Full Text] [Related]
19. Studies on proteinases from the digestive organs of sardine. II. Purification and characterization of two acid proteinases from the stomach. Noda M; Murakami K Biochim Biophys Acta; 1981 Mar; 658(1):27-34. PubMed ID: 6783105 [TBL] [Abstract][Full Text] [Related]
20. The structure and function of acid proteases. Specific inactivation of an acid protease from Rhizopus chinensis by diazoacetyl-DL-norleucine methyl ester. Mizobe F; Takahashi K; Ando T J Biochem; 1973 Jan; 73(1):61-8. PubMed ID: 4570372 [No Abstract] [Full Text] [Related] [Next] [New Search]