These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1030637)

  • 21. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N; Egorova E; Carpentier R
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen activation by isolated chloroplasts from Euglena gracilis. Ferredoxin-dependent function of a fluorescent compound and photosynthetic electron transport close to photosystem.
    Elstner EF; Wildner GF; Heupel A
    Arch Biochem Biophys; 1976 Apr; 173(2):623-30. PubMed ID: 179469
    [No Abstract]   [Full Text] [Related]  

  • 23. Photosystem II energy coupling in chloroplasts with H2O2 as electron donor.
    Pan RL; Izawa S
    Biochim Biophys Acta; 1979 Aug; 547(2):311-9. PubMed ID: 465490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PsaC subunit of photosystem I is oriented with iron-sulfur cluster F(B) as the immediate electron donor to ferredoxin and flavodoxin.
    Vassiliev IR; Jung YS; Yang F; Golbeck JH
    Biophys J; 1998 Apr; 74(4):2029-35. PubMed ID: 9545061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Electron spin resonance of electron transport in photosynthetic systems. IX. Temperature dependence of the kinetics of P700 redox transients in bean chloroplasts induced by flashes of different duration].
    Tikhonov AN; Khomutov GB; Ruuge EK
    Mol Biol (Mosk); 1980; 14(1):157-72. PubMed ID: 6262630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Study of oxygen photoreduction in chloroplasts by the method of luminol and chlorophyll chemiluminescence].
    Shchubalov VA
    Biokhimiia; 1975; 40(2):358-67. PubMed ID: 1203356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Light-induced electron transport and coupled processes in photosystem-I-enriched digitonin fragments obtained from pea chloroplasts].
    Krendeleva TE; Galynina NI; Kononenko AA; Timofeev KN; Kairis AB; Rubin AB
    Biokhimiia; 1978 Jul; 43(7):1251-9. PubMed ID: 698308
    [No Abstract]   [Full Text] [Related]  

  • 28. Absorption and transfer of light and photoreduction activities of spinach chloroplasts under calcium deficiency: promotion by cerium.
    Hao H; Ling C; Xiaoqing L; Chao L; Weiqian C; Yun L; Fashui H
    Biol Trace Elem Res; 2008 May; 122(2):157-67. PubMed ID: 18193396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in photosynthetic activity in the cyanobacterium Chlorogloea fritschii following transition from dark to light growth.
    Evans EH; Carr NG; Evans MC
    Biochim Biophys Acta; 1978 Feb; 501(2):165-73. PubMed ID: 413576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lag phase of CO2-dependent O2 evolution by illuminated Anabaena variabilis cells.
    Samuilov VD; Fedorenko TA
    Biochemistry (Mosc); 1999 Jun; 64(6):610-9. PubMed ID: 10395973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenylenediamine restoration of photosynthetic electron flux in DBMIB-inhibited chloroplasts.
    Selman BR
    J Bioenerg Biomembr; 1976 Jun; 8(3):143-56. PubMed ID: 972141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-dependent consumption of oxygen by Vicia faba chloroplasts.
    Ridley SM; Leech RM
    Arch Biochem Biophys; 1970 Aug; 139(2):351-60. PubMed ID: 4395967
    [No Abstract]   [Full Text] [Related]  

  • 33. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination.
    Asada K; Kiso K; Yoshikawa K
    J Biol Chem; 1974 Apr; 249(7):2175-81. PubMed ID: 4362064
    [No Abstract]   [Full Text] [Related]  

  • 34. The reduction of artificial electron acceptors at sub-zero temperatures by chloroplasts suspended in fluid media.
    Cox RP
    Biochim Biophys Acta; 1975 Jun; 387(3):588-98. PubMed ID: 1138892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain.
    Kozuleva MA; Ivanov BN
    Plant Cell Physiol; 2016 Jul; 57(7):1397-1404. PubMed ID: 27016099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic photophosphorylation reactions catalyzed by ferredoxin, methyl viologen and anthraquinone sulfonate. Use of photochemical reactions to optimize redox poising.
    Robinson HH; Yocum CF
    Biochim Biophys Acta; 1980 Mar; 590(1):97-106. PubMed ID: 7188859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygenic photoreduction of ferredoxin independently of the membrane-bound iron-sulfur centers of photosystem I.
    Arnon DI; Tsujimoto HY; Tang GM
    Biochem Biophys Res Commun; 1981 Apr; 99(3):936-45. PubMed ID: 7247950
    [No Abstract]   [Full Text] [Related]  

  • 38. Superoxide as an obligatory, catalytic intermediate in photosynthetic reduction of oxygen by adrenaline and dopamine.
    Allen JF
    Antioxid Redox Signal; 2003 Feb; 5(1):7-14. PubMed ID: 12626112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The light-intensity-dependence of the efficacy of 2-(3-chloro-4-trifluoromethyl)-anilino-3,5-dinitrothiophene (Ant2p) to inhibit the photosystem 2 reactions of chloroplasts.
    Packham NK; Barber J
    Biochem J; 1984 Jul; 221(2):513-20. PubMed ID: 6433885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adenylate regulation of photosynthetic electron transport and the coupling sites of phosphorylation in spinach chloroplasts.
    Yagi T; Mukohata Y
    J Bioenerg Biomembr; 1976 Oct; 8(5):247-55. PubMed ID: 18277454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.