These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 1030681)

  • 1. [Heinz body formation and abnormal methemoglobin reduction. Expressions of damage to erythrocytes in chronic kidney failure].
    Grieger M; Rapoport S
    Haematologia (Budap); 1976; 10(2):157-68. PubMed ID: 1030681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between reduced glutathione content and Heinz body formation in sheep erythrocytes.
    Goto I; Agar NS; Maede Y
    Am J Vet Res; 1993 Apr; 54(4):622-6. PubMed ID: 8484585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical mechanistic basis of oxidants of methaemoglobin formation.
    Akintonwa DA
    Med Hypotheses; 2000 Feb; 54(2):312-20. PubMed ID: 10790768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione, glutathione reductase and glutathione S-transferase activities in erythrocytes and lymphocytes in chronic renal disease.
    El-Rashidy FH; Al-Turk WA; Stohs SJ
    Res Commun Chem Pathol Pharmacol; 1984 Jun; 44(3):423-30. PubMed ID: 6463365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two mechanisms for toxic effects of hydroxylamines in human erythrocytes: involvement of free radicals and risk of potentiation.
    Evelo CT; Spooren AA; Bisschops RA; Baars LG; Neis JM
    Blood Cells Mol Dis; 1998 Sep; 24(3):280-95. PubMed ID: 10087986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Enzymatic reduction of methemoglobin].
    Kaplan JC; Lostanlen D; Gacon G; Leroux A
    Expos Annu Biochim Med; 1980; 34():81-94. PubMed ID: 7009206
    [No Abstract]   [Full Text] [Related]  

  • 7. [Effect of methylguanidine and guanidine succinic acid on methemoglobin reductase activity in human red cells].
    Kopczyński Z; Dryl-Rydzyńska T
    Pol Tyg Lek; 1991 Feb 4-11; 46(6-7):140-2. PubMed ID: 1845732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug-induced oxidative denaturation of hemoglobin.
    Nagel RL; Ranney HM
    Semin Hematol; 1973 Oct; 10(4):269-78. PubMed ID: 4610751
    [No Abstract]   [Full Text] [Related]  

  • 9. [Oxidative damage of mice erythrocytes infected with Plasmodium berghei].
    Grieger M; Siems W; Müller M; Grinberg L; Leppin K
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1983; 110(4):581-93. PubMed ID: 6196273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic copper poisoning in sheep. I. The relationship of methaemoglobinemia to Heinz body formation and haemolysis during the terminal crisis.
    Soli NE; Froslie A
    Acta Pharmacol Toxicol (Copenh); 1977 Jan; 40(1):169-77. PubMed ID: 576357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration of methaemoglobin reduction by riboflavin in human erythrocytes.
    Matsuki T; Yubisui T; Tomoda A; Yoneyama Y; Takeshita M; Hirano M; Kobayashi K; Tani Y
    Br J Haematol; 1978 Aug; 39(4):523-8. PubMed ID: 698125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cyanosis in children caused by inherited methemoglobinemia due to deficiency of NADH-dependent methemoglobin reductase in erythrocytes].
    Jabłońska-Skwiecińska E; Wierzbicka M; Kubicka K
    Pediatr Pol; 1989 Jan; 64(1):53-9. PubMed ID: 2812907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methemoglobin pathophysiology.
    Jaffé ER
    Prog Clin Biol Res; 1981; 51():133-51. PubMed ID: 7022466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte glutathione peroxidase and superoxide dismutase activities in different stages of chronic renal failure.
    Mimic-Oka J; Simic T; Ekmescic V; Dragicevic P
    Clin Nephrol; 1995 Jul; 44(1):44-8. PubMed ID: 7554532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythrocyte antioxidant defense system in patients with chronic renal failure according to the hemodialysis conditions.
    Stepniewska J; Dolegowska B; Ciechanowski K; Kwiatkowska E; Millo B; Chlubek D
    Arch Med Res; 2006 Apr; 37(3):353-9. PubMed ID: 16513484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NADH/NADPH-methemoglobin reduction system or erythrocytes.
    Hultquist DE; Sannes LJ; Schafer DA
    Prog Clin Biol Res; 1981; 55():291-309. PubMed ID: 7027268
    [No Abstract]   [Full Text] [Related]  

  • 17. [Dependence of human erythrocyte methemoglobin reductase on temperature].
    Kozlova NM; Chernitskiĭ EA
    Biokhimiia; 1991 Feb; 56(2):342-5. PubMed ID: 1873346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of hemodialysate and its peptide fractions on stromal cells and heme synthesis in the bone marrow culture and on the activity of selected enzymes and GSH level in human erythrocytes.VI. Effect on GSH level in the erythrocytes of healthy persons and in patients with terminal renal failure].
    Smoleński O
    Przegl Lek; 1989; 46(12):806-10. PubMed ID: 2631146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell cholesterol transport to plasma in blood from patients with renal failure or a kidney transplant.
    Sutherland WH; Corboy J; Walker RJ; Robertson MC; Ball MJ
    Nephrol Dial Transplant; 1995; 10(3):358-65. PubMed ID: 7792031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced methylglyoxal formation in the erythrocytes of hemodialyzed patients.
    Karg E; Papp F; Tassi N; Janáky T; Wittmann G; Túri S
    Metabolism; 2009 Jul; 58(7):976-82. PubMed ID: 19394056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.