BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10318804)

  • 61. Mutations of noncatalytic sulfhydryl groups influence the stability, folding, and oxidative susceptibility of rhodanese.
    Miller-Martini DM; Chirgwin JM; Horowitz PM
    J Biol Chem; 1994 Feb; 269(5):3423-8. PubMed ID: 8106382
    [TBL] [Abstract][Full Text] [Related]  

  • 62. GroEL-assisted refolding of adrenodoxin during chemical cluster insertion.
    Iametti S; Bera AK; Vecchio G; Grinberg A; Bernhardt R; Bonomi F
    Eur J Biochem; 2001 Apr; 268(8):2421-9. PubMed ID: 11298762
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide.
    Mendoza JA; Horowitz PM
    J Protein Chem; 1994 Jan; 13(1):15-22. PubMed ID: 8011067
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Probing the functional mechanism of Escherichia coli GroEL using circular permutation.
    Mizobata T; Uemura T; Isaji K; Hirayama T; Hongo K; Kawata Y
    PLoS One; 2011; 6(10):e26462. PubMed ID: 22028884
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Role of N-terminal region of Escherichia coli maltodextrin glucosidase in folding and function of the protein.
    Pastor A; Singh AK; Shukla PK; Equbal MJ; Malik ST; Singh TP; Chaudhuri TK
    Biochim Biophys Acta; 2016 Sep; 1864(9):1138-1151. PubMed ID: 27317979
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL.
    Farr GW; Furtak K; Rowland MB; Ranson NA; Saibil HR; Kirchhausen T; Horwich AL
    Cell; 2000 Mar; 100(5):561-73. PubMed ID: 10721993
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding.
    Motojima F; Makio T; Aoki K; Makino Y; Kuwajima K; Yoshida M
    Biochem Biophys Res Commun; 2000 Jan; 267(3):842-9. PubMed ID: 10673379
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401.
    Gibbons DL; Horowitz PM
    J Biol Chem; 1995 Mar; 270(13):7335-40. PubMed ID: 7706275
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The importance of the N-terminal segment for DnaJ-mediated folding of rhodanese while bound to ribosomes as peptidyl-tRNA.
    Kudlicki W; Odom OW; Kramer G; Hardesty B; Merrill GA; Horowitz PM
    J Biol Chem; 1995 May; 270(18):10650-7. PubMed ID: 7738002
    [TBL] [Abstract][Full Text] [Related]  

  • 70. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
    Kawe M; Plückthun A
    J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of C-terminal Truncation of Chaperonin GroEL on the Yield of In-cage Folding of the Green Fluorescent Protein.
    Ishino S; Kawata Y; Taguchi H; Kajimura N; Matsuzaki K; Hoshino M
    J Biol Chem; 2015 Jun; 290(24):15042-51. PubMed ID: 25887400
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Prediction of an inter-residue interaction in the chaperonin GroEL from multiple sequence alignment is confirmed by double-mutant cycle analysis.
    Horovitz A; Bochkareva ES; Yifrach O; Girshovich AS
    J Mol Biol; 1994 Apr; 238(2):133-8. PubMed ID: 7908986
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Recombinant bovine rhodanese: purification and comparison with bovine liver rhodanese.
    Miller DM; Kurzban GP; Mendoza JA; Chirgwin JM; Hardies SC; Horowitz PM
    Biochim Biophys Acta; 1992 Jun; 1121(3):286-92. PubMed ID: 1627606
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Expression of cloned bovine adrenal rhodanese.
    Miller DM; Delgado R; Chirgwin JM; Hardies SC; Horowitz PM
    J Biol Chem; 1991 Mar; 266(8):4686-91. PubMed ID: 2002017
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states.
    Chaudhry C; Horwich AL; Brunger AT; Adams PD
    J Mol Biol; 2004 Sep; 342(1):229-45. PubMed ID: 15313620
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Partially folded rhodanese or its N-terminal sequence can disrupt phospholipid vesicles.
    Mendoza JA; Grant E; Horowitz PM
    J Protein Chem; 1993 Feb; 12(1):65-9. PubMed ID: 8427635
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of the amino terminal domain in GroES oligomerization.
    Llorca O; Schneider K; Carrascosa JL; Méndez E; Valpuesta JM
    Biochim Biophys Acta; 1997 Jan; 1337(1):47-56. PubMed ID: 9003436
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Prevention of rhodanese aggregation by the chaperonin GroEL.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():111-5. PubMed ID: 11484477
    [No Abstract]   [Full Text] [Related]  

  • 79. Nuclear magnetic resonance spectroscopy with the stringent substrate rhodanese bound to the single-ring variant SR1 of the E. coli chaperonin GroEL.
    Koculi E; Horst R; Horwich AL; Wüthrich K
    Protein Sci; 2011 Aug; 20(8):1380-6. PubMed ID: 21633984
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Immunological evidence for a conformational difference between recombinant bovine rhodanese and rhodanese purified from bovine liver.
    Merrill GA; Miller D; Chirgwin J; Horowitz PM
    J Protein Chem; 1992 Apr; 11(2):193-9. PubMed ID: 1382437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.