These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10318804)

  • 81. Activation and release of enzymatically inactive, full-length rhodanese that is bound to ribosomes as peptidyl-tRNA.
    Kudlicki W; Odom OW; Kramer G; Hardesty B
    J Biol Chem; 1994 Jun; 269(24):16549-53. PubMed ID: 8206970
    [TBL] [Abstract][Full Text] [Related]  

  • 82. GroEL-mediated folding of structurally homologous dihydrofolate reductases.
    Clark AC; Frieden C
    J Mol Biol; 1997 May; 268(2):512-25. PubMed ID: 9159487
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Monomeric chaperonin-60 and its 50-kDa fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding.
    Taguchi H; Makino Y; Yoshida M
    J Biol Chem; 1994 Mar; 269(11):8529-34. PubMed ID: 7907593
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Reversible folding of rhodanese. Presence of intermediate(s) at equilibrium.
    Tandon S; Horowitz PM
    J Biol Chem; 1989 Jun; 264(17):9859-66. PubMed ID: 2722881
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Limited tryptic digestion near the amino terminus of bovine liver rhodanese produces active electrophoretic variants with altered refolding.
    Merrill GA; Butler M; Horowitz PM
    J Biol Chem; 1993 Jul; 268(21):15611-20. PubMed ID: 8340386
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8).
    Avvakumov GV; Walker JR; Xue S; Finerty PJ; Mackenzie F; Newman EM; Dhe-Paganon S
    J Biol Chem; 2006 Dec; 281(49):38061-70. PubMed ID: 17035239
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
    Figueiredo L; Klunker D; Ang D; Naylor DJ; Kerner MJ; Georgopoulos C; Hartl FU; Hayer-Hartl M
    J Biol Chem; 2004 Jan; 279(2):1090-9. PubMed ID: 14576149
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The enzyme rhodanese can be reactivated after denaturation in guanidinium chloride.
    Horowitz PM; Simon D
    J Biol Chem; 1986 Oct; 261(30):13887-91. PubMed ID: 3464593
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Escherichia coli GlpE is a prototype sulfurtransferase for the single-domain rhodanese homology superfamily.
    Spallarossa A; Donahue JL; Larson TJ; Bolognesi M; Bordo D
    Structure; 2001 Nov; 9(11):1117-25. PubMed ID: 11709175
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Chaperonin releases the substrate protein in a form with tendency to aggregate and ability to rebind to chaperonin.
    Taguchi H; Yoshida M
    FEBS Lett; 1995 Feb; 359(2-3):195-8. PubMed ID: 7867798
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mutation of cysteine 254 facilitates the conformational changes accompanying the interconversion of persulfide-substituted and persulfide-free rhodanese.
    Islam TA; Miller-Martini DM; Horowitz PM
    J Biol Chem; 1994 Mar; 269(11):7903-13. PubMed ID: 8132509
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Mutation in the interdomain tether influences the stability and refolding of the enzyme rhodanese.
    Luo GX; Hua S; Horowitz PM
    Biochim Biophys Acta; 1995 Sep; 1252(1):165-71. PubMed ID: 7548160
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The detection of kinetic intermediate(s) during refolding of rhodanese.
    Tandon S; Horowitz PM
    J Biol Chem; 1990 Apr; 265(11):5967-70. PubMed ID: 2318842
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Alteration around the active site of rhodanese during urea-induced denaturation and its implications for folding.
    Bhattacharyya AM; Horowitz P
    J Biol Chem; 2000 May; 275(20):14860-4. PubMed ID: 10809729
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Mitochondrial rhodanese: membrane-bound and complexed activity.
    Ogata K; Volini M
    J Biol Chem; 1990 May; 265(14):8087-93. PubMed ID: 2335518
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Rapid secretion by a nonclassical pathway of overexpressed mammalian mitochondrial rhodanese.
    Sloan IS; Horowitz PM; Chirgwin JM
    J Biol Chem; 1994 Nov; 269(44):27625-30. PubMed ID: 7961679
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Bovine mitochondrial rhodanese is a phosphoprotein.
    Ogata K; Dai X; Volini M
    J Biol Chem; 1989 Feb; 264(5):2718-25. PubMed ID: 2492522
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The crystal structure of Leishmania major 3-mercaptopyruvate sulfurtransferase. A three-domain architecture with a serine protease-like triad at the active site.
    Alphey MS; Williams RA; Mottram JC; Coombs GH; Hunter WN
    J Biol Chem; 2003 Nov; 278(48):48219-27. PubMed ID: 12952945
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The covalent structure of bovine liver rhodanese. Isolation and partial structural analysis of cyanogen bromide fragements and the complete sequence of the enzyme.
    Russell J; Weng L; Keim PS; Heinrikson RL
    J Biol Chem; 1978 Nov; 253(22):8102-8. PubMed ID: 711737
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Model peptide studies demonstrate that amphipathic secondary structures can be recognized by the chaperonin GroEL (cpn60).
    Brazil BT; Cleland JL; McDowell RS; Skelton NJ; Paris K; Horowitz PM
    J Biol Chem; 1997 Feb; 272(8):5105-11. PubMed ID: 9030576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.