These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10318804)

  • 101. Stable intermediates can be trapped during the reversible refolding of urea-denatured rhodanese.
    Horowitz PM; Criscimagna NL
    J Biol Chem; 1990 Feb; 265(5):2576-83. PubMed ID: 2303416
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Influence of the mature portion of a precursor protein on the mitochondrial signal sequence.
    Waltner M; Hammen PK; Weiner H
    J Biol Chem; 1996 Aug; 271(35):21226-30. PubMed ID: 8702895
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Domain separation precedes global unfolding of rhodanese.
    Shibatani T; Kramer G; Hardesty B; Horowitz PM
    J Biol Chem; 1999 Nov; 274(47):33795-9. PubMed ID: 10559274
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effect of lauryl maltoside.
    Tandon S; Horowitz P
    J Biol Chem; 1986 Nov; 261(33):15615-8. PubMed ID: 3465721
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions.
    Kiser PD; Lodowski DT; Palczewski K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Jun; 63(Pt 6):457-61. PubMed ID: 17554162
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Tetracyanonickelate probes the active site of sulfur-free rhodanese.
    Chow SF; Horowitz PM
    J Biol Chem; 1985 Dec; 260(29):15516-21. PubMed ID: 3864780
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Characterization of rhodanese-tetracyanonickelate. An active site complex that slows sulfur-free rhodanese conversion to inert conformers.
    Chow SF; Horowitz P
    J Biol Chem; 1986 Jun; 261(16):7264-9. PubMed ID: 3458706
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Productive and nonproductive intermediates in the folding of denatured rhodanese.
    Panda M; Gorovits BM; Horowitz PM
    J Biol Chem; 2000 Jan; 275(1):63-70. PubMed ID: 10617586
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effects of the concentration and type of detergent.
    Tandon S; Horowitz PM
    J Biol Chem; 1987 Apr; 262(10):4486-91. PubMed ID: 3470292
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Bound substrate polypeptides can generally stabilize the tetradecameric structure of Cpn60 and induce its reassembly from monomers.
    Mendoza JA; Horowitz PM
    J Biol Chem; 1994 Oct; 269(42):25963-5. PubMed ID: 7929305
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Interactive intermediates are formed during the urea unfolding of rhodanese.
    Horowitz PM; Butler M
    J Biol Chem; 1993 Feb; 268(4):2500-4. PubMed ID: 8428927
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Mitochondrial enzyme rhodanese is essential for 5 S ribosomal RNA import into human mitochondria.
    Smirnov A; Comte C; Mager-Heckel AM; Addis V; Krasheninnikov IA; Martin RP; Entelis N; Tarassov I
    J Biol Chem; 2010 Oct; 285(40):30792-803. PubMed ID: 20663881
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Structure of TBC1D23 N-terminus reveals a novel role for rhodanese domain.
    Liu D; Yang F; Liu Z; Wang J; Huang W; Meng W; Billadeau DD; Sun Q; Mo X; Jia D
    PLoS Biol; 2020 May; 18(5):e3000746. PubMed ID: 32453802
    [TBL] [Abstract][Full Text] [Related]  

  • 114. The molecular chaperonin cpn60 displays local flexibility that is reduced after binding with an unfolded protein.
    Gorovits BM; Horowitz PM
    J Biol Chem; 1995 Jun; 270(22):13057-62. PubMed ID: 7768899
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Thiosulfate-Cyanide Sulfurtransferase a Mitochondrial Essential Enzyme: From Cell Metabolism to the Biotechnological Applications.
    Buonvino S; Arciero I; Melino S
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955583
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology.
    Giuffrè A; Vicente JB
    Oxid Med Cell Longev; 2018; 2018():6290931. PubMed ID: 30050658
    [TBL] [Abstract][Full Text] [Related]  

  • 117. S-Nitrosylation Induces Structural and Dynamical Changes in a Rhodanese Family Protein.
    Eichmann C; Tzitzilonis C; Nakamura T; Kwiatkowski W; Maslennikov I; Choe S; Lipton SA; Riek R
    J Mol Biol; 2016 Sep; 428(19):3737-51. PubMed ID: 27473602
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Polymorphic Variants of Human Rhodanese Exhibit Differences in Thermal Stability and Sulfur Transfer Kinetics.
    Libiad M; Sriraman A; Banerjee R
    J Biol Chem; 2015 Sep; 290(39):23579-88. PubMed ID: 26269602
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Deletional protein engineering based on stable fold.
    Raghunathan G; Soundrarajan N; Sokalingam S; Yun H; Lee SG
    PLoS One; 2012; 7(12):e51510. PubMed ID: 23240034
    [TBL] [Abstract][Full Text] [Related]  

  • 120.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.