These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 10318841)

  • 1. Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton.
    Le Bonniec S; Deregnaucourt C; Redeker V; Banerjee R; Grellier P; Goldberg DE; Schrével J
    J Biol Chem; 1999 May; 274(20):14218-23. PubMed ID: 10318841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.
    Li F; Bounkeua V; Pettersen K; Vinetz JM
    Malar J; 2016 Feb; 15():111. PubMed ID: 26911483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical properties of a novel cysteine protease of Plasmodium vivax, vivapain-4.
    Na BK; Bae YA; Zo YG; Choe Y; Kim SH; Desai PV; Avery MA; Craik CS; Kim TS; Rosenthal PJ; Kong Y
    PLoS Negl Trop Dis; 2010 Oct; 4(10):e849. PubMed ID: 20967286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine.
    Banerjee R; Liu J; Beatty W; Pelosof L; Klemba M; Goldberg DE
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):990-5. PubMed ID: 11782538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The zymogen of plasmepsin V from Plasmodium falciparum is enzymatically active.
    Xiao H; Bryksa BC; Bhaumik P; Gustchina A; Kiso Y; Yao SQ; Wlodawer A; Yada RY
    Mol Biochem Parasitol; 2014 Oct; 197(1-2):56-63. PubMed ID: 25447707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The malaria parasite egress protease SUB1 is activated through precise, plasmepsin X-mediated cleavage of the SUB1 prodomain.
    Withers-Martinez C; George R; Maslen S; Jean L; Hackett F; Skehel M; Blackman MJ
    Biochim Biophys Acta Gen Subj; 2024 Sep; 1868(9):130665. PubMed ID: 38969256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a non-exported Plasmepsin V substrate that functions in the parasitophorous vacuole of malaria parasites.
    Fréville A; Ressurreição M; van Ooij C
    mBio; 2024 Jan; 15(1):e0122323. PubMed ID: 38078758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation and substrate processing topography of the Plasmodium falciparum invasion/egress protease plasmepsin X.
    Mukherjee S; Nguyen S; Sharma E; Goldberg DE
    Nat Commun; 2022 Aug; 13(1):4537. PubMed ID: 35927261
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Zheng K; Li Q; Jiang N; Zhang Y; Zheng Y; Zhang Y; Feng Y; Chen R; Sang X; Chen Q
    mBio; 2024 Apr; 15(4):e0351023. PubMed ID: 38470053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Biological Role and Insight into Druggability of the
    Polino AJ; Nasamu AS; Niles JC; Goldberg DE
    ACS Infect Dis; 2020 Apr; 6(4):738-746. PubMed ID: 32069391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization and preliminary X-ray analysis of the aspartic protease plasmepsin 4 from the malarial parasite Plasmodium malariae.
    Madabushi A; Chakraborty S; Fisher SZ; Clemente JC; Yowell C; Agbandje-McKenna M; Dame JB; Dunn BM; McKenna R
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Feb; 61(Pt 2):228-31. PubMed ID: 16511002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catestatin, an endogenous chromogranin A-derived peptide, inhibits in vitro growth of Plasmodium falciparum.
    Akaddar A; Doderer-Lang C; Marzahn MR; Delalande F; Mousli M; Helle K; Van Dorsselaer A; Aunis D; Dunn BM; Metz-Boutigue MH; Candolfi E
    Cell Mol Life Sci; 2010 Mar; 67(6):1005-15. PubMed ID: 20043183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies of vacuolar plasmepsins.
    Bhaumik P; Gustchina A; Wlodawer A
    Biochim Biophys Acta; 2012 Jan; 1824(1):207-23. PubMed ID: 21540129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems.
    Liu J; Istvan ES; Gluzman IY; Gross J; Goldberg DE
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8840-5. PubMed ID: 16731623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Benzocycloalkanone-Based Michael Acceptors and Biological Activities as Antimalarial and Antitrypanosomal Agents.
    Mijoba A; Fernandez-Moreira E; Parra-Giménez N; Espinosa-Tapia S; Blanco Z; Ramírez H; Charris JE
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the
    Abugri J; Ayariga J; Sunwiale SS; Wezena CA; Gyamfi JA; Adu-Frimpong M; Agongo G; Dongdem JT; Abugri D; Dinko B
    Heliyon; 2022 Aug; 8(8):e10390. PubMed ID: 36033316
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Getty TA; Peterson JW; Fujioka H; Walsh AM; Sam-Yellowe TY
    Trop Med Infect Dis; 2021 Jul; 6(3):. PubMed ID: 34287391
    [No Abstract]   [Full Text] [Related]  

  • 18. NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection.
    Pei G; Dorhoi A
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host Cytoskeleton Remodeling throughout the Blood Stages of Plasmodium falciparum.
    Warncke JD; Beck HP
    Microbiol Mol Biol Rev; 2019 Nov; 83(4):. PubMed ID: 31484690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-dependent phosphorylation of
    Iyer GR; Singh S; Kaur I; Agarwal S; Siddiqui MA; Bansal A; Kumar G; Saini E; Paul G; Mohmmed A; Chitnis CE; Malhotra P
    J Biol Chem; 2018 Jun; 293(25):9736-9746. PubMed ID: 29716996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.