These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows. Li Z; Lai MC East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308 [TBL] [Abstract][Full Text] [Related]
9. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
10. Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity. Hunana P; Zank GP; Shaikh D Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026302. PubMed ID: 17025534 [TBL] [Abstract][Full Text] [Related]
11. Variational principle for the Navier-Stokes equations. Kerswell RR Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5482-94. PubMed ID: 11969527 [TBL] [Abstract][Full Text] [Related]
12. Kinetically reduced local Navier-Stokes equations for simulation of incompressible viscous flows. Borok S; Ansumali S; Karlin IV Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066704. PubMed ID: 18233940 [TBL] [Abstract][Full Text] [Related]
13. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions. Li Z; Xiao L; Cai Q; Zhao H; Luo R J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702 [TBL] [Abstract][Full Text] [Related]
14. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations. He Y Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965 [TBL] [Abstract][Full Text] [Related]
15. Normal mode analysis of 3D incompressible viscous fluid flow models. Zhang G; Cai M Appl Anal; 2021; 100(1):116-134. PubMed ID: 33840816 [TBL] [Abstract][Full Text] [Related]
16. An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/ Bolis A; Cantwell CD; Moxey D; Serson D; Sherwin SJ Comput Phys Commun; 2016 Sep; 206():17-25. PubMed ID: 27594707 [TBL] [Abstract][Full Text] [Related]
17. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space. Kavvas ML; Ercan A Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242 [TBL] [Abstract][Full Text] [Related]
18. Efficient Numerical Simulation of Biochemotaxis Phenomena in Fluid Environments. Zhou X; Bian G; Wang Y; Xiao X Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628254 [TBL] [Abstract][Full Text] [Related]
19. Divergence-Free SPH for Incompressible and Viscous Fluids. Bender J; Koschier D IEEE Trans Vis Comput Graph; 2017 Mar; 23(3):1193-1206. PubMed ID: 27295676 [TBL] [Abstract][Full Text] [Related]
20. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels. Fambri F; Dumbser M; Casulli V Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1170-98. PubMed ID: 24842268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]