These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10318891)

  • 1. Numerical simulation of incompressible viscous flow in deforming domains.
    Colella P; Trebotich DP
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5378-81. PubMed ID: 10318891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic adaptive moving mesh finite-volume method for the blood flow and coagulation modeling.
    Terekhov KM; Butakov ID; Danilov AA; Vassilevski YV
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3731. PubMed ID: 38018385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid.
    Joseph DD
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14272-7. PubMed ID: 16983077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplified method for simulation of incompressible viscous flows inspired by the lattice Boltzmann method.
    Huang JJ
    Phys Rev E; 2021 May; 103(5-1):053311. PubMed ID: 34134207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic theoretical approach to turbulence in variable-density incompressible, statistically inhomogeneous fluids.
    Hazak G; Elbaz Y; Zalesak S; Wygoda N; Schmitt AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026314. PubMed ID: 20365658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.
    Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial gauge methods for incompressible fluid dynamics.
    Saye R
    Sci Adv; 2016 Jun; 2(6):e1501869. PubMed ID: 27386567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity.
    Hunana P; Zank GP; Shaikh D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026302. PubMed ID: 17025534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variational principle for the Navier-Stokes equations.
    Kerswell RR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5482-94. PubMed ID: 11969527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetically reduced local Navier-Stokes equations for simulation of incompressible viscous flows.
    Borok S; Ansumali S; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066704. PubMed ID: 18233940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal mode analysis of 3D incompressible viscous fluid flow models.
    Zhang G; Cai M
    Appl Anal; 2021; 100(1):116-134. PubMed ID: 33840816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/
    Bolis A; Cantwell CD; Moxey D; Serson D; Sherwin SJ
    Comput Phys Commun; 2016 Sep; 206():17-25. PubMed ID: 27594707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Numerical Simulation of Biochemotaxis Phenomena in Fluid Environments.
    Zhou X; Bian G; Wang Y; Xiao X
    Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence-Free SPH for Incompressible and Viscous Fluids.
    Bender J; Koschier D
    IEEE Trans Vis Comput Graph; 2017 Mar; 23(3):1193-1206. PubMed ID: 27295676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.
    Fambri F; Dumbser M; Casulli V
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1170-98. PubMed ID: 24842268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.