These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 10318921)

  • 1. Stripe formation in juvenile Pomacanthus explained by a generalized turing mechanism with chemotaxis.
    Painter KJ; Maini PK; Othmer HG
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5549-54. PubMed ID: 10318921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus.
    Kondo S; Asal R
    Nature; 1995 Aug; 376(6543):765-8. PubMed ID: 24547605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation.
    Gaffney EA; Lee SS
    Math Med Biol; 2015 Mar; 32(1):56-78. PubMed ID: 24087834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labyrinthine versus straight-striped patterns generated by two-dimensional Turing systems.
    Shoji H; Iwasa Y
    J Theor Biol; 2005 Nov; 237(1):104-16. PubMed ID: 15936775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Aspects in Pattern Formation Arise from Coupling Turing Reaction-Diffusion and Chemotaxis.
    Fraga Delfino Kunz C; Gerisch A; Glover J; Headon D; Painter KJ; Matthäus F
    Bull Math Biol; 2023 Dec; 86(1):4. PubMed ID: 38038776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid discrete-continuum approach to model Turing pattern formation.
    Macfarlane FR; Chaplain MAJ; Lorenzi T
    Math Biosci Eng; 2020 Oct; 17(6):7442-7479. PubMed ID: 33378905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pigment cell movement is not required for generation of Turing patterns in zebrafish skin.
    Bullara D; De Decker Y
    Nat Commun; 2015 May; 6():6971. PubMed ID: 25959141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is pigment patterning in fish skin determined by the Turing mechanism?
    Watanabe M; Kondo S
    Trends Genet; 2015 Feb; 31(2):88-96. PubMed ID: 25544713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish.
    Frohnhöfer HG; Krauss J; Maischein HM; Nüsslein-Volhard C
    Development; 2013 Jul; 140(14):2997-3007. PubMed ID: 23821036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the orientation of stripes in fish skin patterning.
    Míguez DG; Muñuzuri AP
    Biophys Chem; 2006 Nov; 124(2):161-7. PubMed ID: 16844282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turing pattern with proportion preservation.
    Ishihara S; Kaneko K
    J Theor Biol; 2006 Feb; 238(3):683-93. PubMed ID: 16098989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays.
    Seirin Lee S; Gaffney EA; Baker RE
    Bull Math Biol; 2011 Nov; 73(11):2527-51. PubMed ID: 21347815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative modelling approach to zebrafish pigment pattern formation.
    Owen JP; Kelsh RN; Yates CA
    Elife; 2020 Jul; 9():. PubMed ID: 32716296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-dimensional numerical study of spatial pattern formation in interacting Turing systems.
    Barrio RA; Varea C; Aragón JL; Maini PK
    Bull Math Biol; 1999 May; 61(3):483-505. PubMed ID: 17883228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferation, dispersal and patterned aggregation of iridophores in the skin prefigure striped colouration of zebrafish.
    Singh AP; Schach U; Nüsslein-Volhard C
    Nat Cell Biol; 2014 Jun; 16(6):607-14. PubMed ID: 24776884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turing-Hopf patterns on growing domains: The torus and the sphere.
    Sánchez-Garduño F; Krause AL; Castillo JA; Padilla P
    J Theor Biol; 2019 Nov; 481():136-150. PubMed ID: 30266461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Developmental Genetics of Vertebrate Color Pattern Formation: Lessons from Zebrafish.
    Irion U; Singh AP; Nüsslein-Volhard C
    Curr Top Dev Biol; 2016; 117():141-69. PubMed ID: 26969976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development.
    Parichy DM; Turner JM
    Development; 2003 Mar; 130(5):817-33. PubMed ID: 12538511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Turing-Hopf Bifurcation Scenario for Pattern Formation on Growing Domains.
    Castillo JA; Sánchez-Garduño F; Padilla P
    Bull Math Biol; 2016 Jul; 78(7):1410-49. PubMed ID: 27412157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation of Turing-like Patterns by Morphogen Gradients and Tissue Anisotropies.
    Hiscock TW; Megason SG
    Cell Syst; 2015 Dec; 1(6):408-416. PubMed ID: 26771020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.