These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 10318953)
1. CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host-parasite boundary in intracellular stages. Perkins ME; Riojas YA; Wu TW; Le Blancq SM Proc Natl Acad Sci U S A; 1999 May; 96(10):5734-9. PubMed ID: 10318953 [TBL] [Abstract][Full Text] [Related]
2. Partial characterization of genes encoding the ATP-binding cassette proteins of Cryptosporidium parvum. Li LC; Mun YF Trop Biomed; 2005 Dec; 22(2):115-22. PubMed ID: 16883276 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Cevallos AM; Zhang X; Waldor MK; Jaison S; Zhou X; Tzipori S; Neutra MR; Ward HD Infect Immun; 2000 Jul; 68(7):4108-16. PubMed ID: 10858228 [TBL] [Abstract][Full Text] [Related]
4. Modulation of gene expression of three Cryptosporidium parvum ATP-binding cassette transporters in response to drug treatment. Benitez AJ; McNair N; Mead J Parasitol Res; 2007 Nov; 101(6):1611-6. PubMed ID: 17705063 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of Cryptosporidium parvum Clec, a novel C-type lectin domain-containing mucin-like glycoprotein. Bhalchandra S; Ludington J; Coppens I; Ward HD Infect Immun; 2013 Sep; 81(9):3356-65. PubMed ID: 23817613 [TBL] [Abstract][Full Text] [Related]
6. Cryptosporidium parvum: effect of multi-drug reversing agents on the expression and function of ATP-binding cassette transporters. Bonafonte MT; Romagnoli PA; McNair N; Shaw AP; Scanlon M; Leitch GJ; Mead JR Exp Parasitol; 2004; 106(3-4):126-34. PubMed ID: 15172220 [TBL] [Abstract][Full Text] [Related]
7. Cryptosporidium p30, a galactose/N-acetylgalactosamine-specific lectin, mediates infection in vitro. Bhat N; Joe A; PereiraPerrin M; Ward HD J Biol Chem; 2007 Nov; 282(48):34877-87. PubMed ID: 17905738 [TBL] [Abstract][Full Text] [Related]
8. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
9. Characterization of an ATP-binding cassette transporter in Cryptosporidium parvum. Perkins ME; Volkman S; Wirth DF; Le Blancq SM Mol Biochem Parasitol; 1997 Jul; 87(1):117-22. PubMed ID: 9233681 [No Abstract] [Full Text] [Related]
10. The Cryptosporidium parvum ABC protein family. Zapata F; Perkins ME; Riojas YA; Wu TW; Le Blancq SM Mol Biochem Parasitol; 2002 Mar; 120(1):157-61. PubMed ID: 11849715 [No Abstract] [Full Text] [Related]
11. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion. Yu X; Guo F; Mouneimne RB; Zhu G J Infect Dis; 2020 May; 221(11):1816-1825. PubMed ID: 31872225 [TBL] [Abstract][Full Text] [Related]
12. Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Strong WB; Gut J; Nelson RG Infect Immun; 2000 Jul; 68(7):4117-34. PubMed ID: 10858229 [TBL] [Abstract][Full Text] [Related]
13. Domain interactions in the yeast ATP binding cassette transporter Ycf1p: intragenic suppressor analysis of mutations in the nucleotide binding domains. Falcón-Pérez JM; Martínez-Burgos M; Molano J; Mazón MJ; Eraso P J Bacteriol; 2001 Aug; 183(16):4761-70. PubMed ID: 11466279 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of the nucleotide binding domain of the Cryptosporidium parvum CpABC4 transporter: an iron-sulfur cluster transporter homolog. Benitez AJ; Arrowood MJ; Mead JR Mol Biochem Parasitol; 2009 Jun; 165(2):103-10. PubMed ID: 19428657 [TBL] [Abstract][Full Text] [Related]
15. On-target inhibition of Cryptosporidium parvum by nitazoxanide (NTZ) and paclitaxel (PTX) validated using a novel MDR1-transgenic host cell model and algorithms to quantify the effect on the parasite target. Yang B; Yan Y; Wang D; Zhang Y; Yin J; Zhu G PLoS Negl Trop Dis; 2023 Mar; 17(3):e0011217. PubMed ID: 36972284 [TBL] [Abstract][Full Text] [Related]
16. Host intestinal epithelial response to Cryptosporidium parvum. Deng M; Rutherford MS; Abrahamsen MS Adv Drug Deliv Rev; 2004 Apr; 56(6):869-84. PubMed ID: 15063595 [TBL] [Abstract][Full Text] [Related]
17. Cloning and Iron Transportation of Nucleotide Binding Domain of Cryptosporidium andersoni ATP-Binding Cassette (CaABC) Gene. Wang JH; Xue XH; Zhou J; Fan CY; Xie QQ; Wang P Korean J Parasitol; 2015 Jun; 53(3):335-9. PubMed ID: 26174828 [TBL] [Abstract][Full Text] [Related]
18. Cryptosporidium parvum induces host cell actin accumulation at the host-parasite interface. Elliott DA; Clark DP Infect Immun; 2000 Apr; 68(4):2315-22. PubMed ID: 10722635 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Putignani L; Tait A; Smith HV; Horner D; Tovar J; Tetley L; Wastling JM Parasitology; 2004 Jul; 129(Pt 1):1-18. PubMed ID: 15267107 [TBL] [Abstract][Full Text] [Related]
20. Cholangiocyte myosin IIB is required for localized aggregation of sodium glucose cotransporter 1 to sites of Cryptosporidium parvum cellular invasion and facilitates parasite internalization. O'Hara SP; Gajdos GB; Trussoni CE; Splinter PL; LaRusso NF Infect Immun; 2010 Jul; 78(7):2927-36. PubMed ID: 20457792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]