These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
37 related articles for article (PubMed ID: 1031929)
1. Interaction of lanthanides with muscle microsomes. Krasnow N Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():297-304. PubMed ID: 1031929 [TBL] [Abstract][Full Text] [Related]
2. Lanthanide binding to cardiac and skeletal muscle microsomes. Effects of adenosine triphosphate, cations, and ionophores. Krasnow N Arch Biochem Biophys; 1977 May; 181(1):322-30. PubMed ID: 141909 [No Abstract] [Full Text] [Related]
3. Phospholamban-modulated Ca2+ transport in cardiac and slow twitch skeletal muscle sarcoplasmic reticulum. Movsesian MA; Morris GL; Wang JH; Krall J Second Messengers Phosphoproteins; 1992-1993; 14(3):151-61. PubMed ID: 1345340 [TBL] [Abstract][Full Text] [Related]
4. Relationship between phospholamban and nucleotide activation of cardiac sarcoplasmic reticulum Ca2+ adenosinetriphosphatase. Coll KE; Johnson RG; McKenna E Biochemistry; 1999 Feb; 38(8):2444-51. PubMed ID: 10029538 [TBL] [Abstract][Full Text] [Related]
5. [Calcium transport and ATPase activity of mitochondria and sarcoplasmic reticulum fragments of rabbit heart and muscle in hypercholesteremia]. Chernysheva GV; Stoĭda LV; Kuz'mina IL Biull Eksp Biol Med; 1980 Mar; 89(3):292-4. PubMed ID: 6446328 [TBL] [Abstract][Full Text] [Related]
6. Role of free calcium and ATP in calcium release from cardiac sarcoplasmic reticulum fragments. Besch HR; Watanabe AM Recent Adv Stud Cardiac Struct Metab; 1975; 5():143-9. PubMed ID: 1188150 [TBL] [Abstract][Full Text] [Related]
7. Comparison of [3H]ryanodine receptors and Ca++ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum. Zimányi I; Pessah IN J Pharmacol Exp Ther; 1991 Mar; 256(3):938-46. PubMed ID: 1848635 [TBL] [Abstract][Full Text] [Related]
8. Cytochemical studies on sarcoplasmic reticulum of heart and skeletal muscle. Agostini B; Suko J; Hasselbach W Recent Adv Stud Cardiac Struct Metab; 1975; 5():125-31. PubMed ID: 1188149 [TBL] [Abstract][Full Text] [Related]
9. Characterization of multiple [3H]ryanodine binding sites on the Ca2+ release channel of sarcoplasmic reticulum from skeletal and cardiac muscle: evidence for a sequential mechanism in ryanodine action. Pessah IN; Zimanyi I Mol Pharmacol; 1991 May; 39(5):679-89. PubMed ID: 1851961 [TBL] [Abstract][Full Text] [Related]
10. The interaction of lanthanides with isolated sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Barry KJ; Bloomquist E; Mikkelsen R Arch Int Physiol Biochim; 1979 Aug; 87(3):493-9. PubMed ID: 93439 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Ca2+ release from the cardiac sarcoplasmic reticulum. Dhalla NS; Sulakhe PV; Lamers JM; Ganguly PK Gen Physiol Biophys; 1983 Oct; 2(5):339-51. PubMed ID: 6236129 [TBL] [Abstract][Full Text] [Related]
12. [Passive binding of Ca2+ by fragments of the sarcoplasmic reticulum of frog skeletal muscles]. Esyrev OV; Sarsenova ShS; Uspanova ZhK; Kniazevskaia IB; Turmukhambetova VK Vopr Med Khim; 1982; 28(5):51-5. PubMed ID: 6983776 [TBL] [Abstract][Full Text] [Related]
13. Influence of quinidine on ATP-linked calcium binding by heart mitochondria and microsomes. Harrow JA; Dhalla NS Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():457-65. PubMed ID: 1031945 [TBL] [Abstract][Full Text] [Related]
14. Effects of adrenochrome on calcium accumulating and adenosine triphosphatase activities of the rat heart microsomes. Takeo S; Taam GM; Beamish RE; Dhalla NS J Pharmacol Exp Ther; 1980 Sep; 214(3):688-93. PubMed ID: 6447203 [TBL] [Abstract][Full Text] [Related]
15. Observation of calcium uptake by isolated sarcoplasmic reticulum employing a fluorescent chelate probe. Caswell AH; Warren S Biochem Biophys Res Commun; 1972 Mar; 46(5):1757-63. PubMed ID: 5015227 [No Abstract] [Full Text] [Related]
16. Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle. Carvalho AP; Leo B J Gen Physiol; 1967 May; 50(5):1327-52. PubMed ID: 6033589 [TBL] [Abstract][Full Text] [Related]
17. Lanthanide inhibition of calcium binding by muscle microsomes: ATP and time dependency. Krasnow N J Mol Cell Cardiol; 1978 Jan; 10(1):55-66. PubMed ID: 146095 [No Abstract] [Full Text] [Related]
18. [Mutual effect of phosphorylation, oxidation, and proteolysis on calcium transport in the sarcoplasmic reticulum of the heart and vessels]. Antipenko AE; Krasovskaia IE; Dizhe GP; Sharonov BP; Lyzlova SN Dokl Akad Nauk; 1992; 326(5):920-3. PubMed ID: 1337009 [No Abstract] [Full Text] [Related]
19. Calcium-binding and calcium-uptake by cardiac microsomes: a kinetic analysis. Repke DI; Katz AM J Mol Cell Cardiol; 1972 Aug; 4(4):401-16. PubMed ID: 5052594 [No Abstract] [Full Text] [Related]
20. Effects of prostaglandins and oxytocin on calcium release from a uterine microsomal fraction. Carsten ME; Miller JD J Biol Chem; 1977 Mar; 252(5):1576-81. PubMed ID: 320210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]