BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10319414)

  • 21. The HIV-1 integrase monomer induces a specific interaction with LTR DNA for concerted integration.
    Pandey KK; Bera S; Grandgenett DP
    Biochemistry; 2011 Nov; 50(45):9788-96. PubMed ID: 21992419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleophile selection for the endonuclease activities of human, ovine, and avian retroviral integrases.
    Skinner LM; Sudol M; Harper AL; Katzman M
    J Biol Chem; 2001 Jan; 276(1):114-24. PubMed ID: 11024025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells.
    Sinha S; Grandgenett DP
    J Virol; 2005 Jul; 79(13):8208-16. PubMed ID: 15956566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HIV-1 integrase crosslinked oligomers are active in vitro.
    Faure A; Calmels C; Desjobert C; Castroviejo M; Caumont-Sarcos A; Tarrago-Litvak L; Litvak S; Parissi V
    Nucleic Acids Res; 2005; 33(3):977-86. PubMed ID: 15718297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative studies of bacterially expressed integrase proteins of caprine arthritis-encephalitis virus, maedi-visna virus and human immunodeficiency virus type 1.
    Störmann KD; Schlecht MC; Pfaff E
    J Gen Virol; 1995 Jul; 76 ( Pt 7)():1651-63. PubMed ID: 9049371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determinants of Mg2+-dependent activities of recombinant human immunodeficiency virus type 1 integrase.
    Leh H; Brodin P; Bischerour J; Deprez E; Tauc P; Brochon JC; LeCam E; Coulaud D; Auclair C; Mouscadet JF
    Biochemistry; 2000 Aug; 39(31):9285-94. PubMed ID: 10924121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Basis of HTLV type 1 target site selection.
    Leclercq I; Mortreux F; Gabet AS; Jonsson CB; Wattel E
    AIDS Res Hum Retroviruses; 2000 Nov; 16(16):1653-9. PubMed ID: 11080806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Interactions of HIV-1 DNA heterocyclic bases with viral DNA].
    Agapkina IuIu; Tashlitskiĭ VN; Deprez E; Brochon JC; Shugaliĭ AV; Mouscadet JF; Gottikh MB
    Mol Biol (Mosk); 2004; 38(5):848-57. PubMed ID: 15554187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles.
    Delelis O; Petit C; Leh H; Mbemba G; Mouscadet JF; Sonigo P
    Retrovirology; 2005 May; 2():31. PubMed ID: 15904533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrase and integration: biochemical activities of HIV-1 integrase.
    Delelis O; Carayon K; Saïb A; Deprez E; Mouscadet JF
    Retrovirology; 2008 Dec; 5():114. PubMed ID: 19091057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HIV-1 integrase interaction with U3 and U5 terminal sequences in vitro defined using substrates with random sequences.
    Brin E; Leis J
    J Biol Chem; 2002 May; 277(21):18357-64. PubMed ID: 11897790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Processing of deoxyuridine mismatches and abasic sites by human immunodeficiency virus type-1 integrase.
    Mazumder A; Pommier Y
    Nucleic Acids Res; 1995 Aug; 23(15):2865-71. PubMed ID: 7659508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific and independent recognition of U3 and U5 att sites by human immunodeficiency virus type 1 integrase in vivo.
    Masuda T; Kuroda MJ; Harada S
    J Virol; 1998 Oct; 72(10):8396-402. PubMed ID: 9733892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding.
    Serrao E; Krishnan L; Shun MC; Li X; Cherepanov P; Engelman A; Maertens GN
    Nucleic Acids Res; 2014 Apr; 42(8):5164-76. PubMed ID: 24520116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subcellular localization of avian sarcoma virus and human immunodeficiency virus type 1 integrases.
    Kukolj G; Jones KS; Skalka AM
    J Virol; 1997 Jan; 71(1):843-7. PubMed ID: 8985428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical characteristics of functional domains using feline foamy virus integrase mutants.
    Yoo GW; Shin CG
    BMB Rep; 2013 Jan; 46(1):53-8. PubMed ID: 23351385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration requires a specific interaction of the donor DNA terminal 5'-cytosine with glutamine 148 of the HIV-1 integrase flexible loop.
    Johnson AA; Santos W; Pais GC; Marchand C; Amin R; Burke TR; Verdine G; Pommier Y
    J Biol Chem; 2006 Jan; 281(1):461-7. PubMed ID: 16257967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular characterization of proteolytic processing of the Pol proteins of human foamy virus reveals novel features of the viral protease.
    Pfrepper KI; Rackwitz HR; Schnölzer M; Heid H; Löchelt M; Flügel RM
    J Virol; 1998 Sep; 72(9):7648-52. PubMed ID: 9696869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Key determinants of target DNA recognition by retroviral intasomes.
    Serrao E; Ballandras-Colas A; Cherepanov P; Maertens GN; Engelman AN
    Retrovirology; 2015 Apr; 12():39. PubMed ID: 25924943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat Ends.
    Chen A; Weber IT; Harrison RW; Leis J
    J Biol Chem; 2006 Feb; 281(7):4173-82. PubMed ID: 16298997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.