These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 10319861)

  • 1. Action of BTN1, the yeast orthologue of the gene mutated in Batten disease.
    Pearce DA; Ferea T; Nosel SA; Das B; Sherman F
    Nat Genet; 1999 May; 22(1):55-8. PubMed ID: 10319861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Batten disease with the yeast Saccharomyces cerevisiae.
    Pearce DA; Sherman F
    Mol Genet Metab; 1999 Apr; 66(4):314-9. PubMed ID: 10191120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. btn1, the Schizosaccharomyces pombe homologue of the human Batten disease gene CLN3, regulates vacuole homeostasis.
    Gachet Y; Codlin S; Hyams JS; Mole SE
    J Cell Sci; 2005 Dec; 118(Pt 23):5525-36. PubMed ID: 16291725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of Btn1p in the yeast model for juvenile Batten disease may cause arginine to become toxic to yeast cells.
    Vitiello SP; Wolfe DM; Pearce DA
    Hum Mol Genet; 2007 May; 16(9):1007-16. PubMed ID: 17341489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of pH regulation by Btn1p, the yeast homolog of human Cln3p.
    Pearce DA; Nosel SA; Sherman F
    Mol Genet Metab; 1999 Apr; 66(4):320-3. PubMed ID: 10191121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic reversal of the btn1 defects in yeast by chloroquine: a yeast model for Batten disease.
    Pearce DA; Carr CJ; Das B; Sherman F
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11341-5. PubMed ID: 10500178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast model for batten disease: mutations in BTN1, BTN2, and HSP30 alter pH homeostasis.
    Chattopadhyay S; Muzaffar NE; Sherman F; Pearce DA
    J Bacteriol; 2000 Nov; 182(22):6418-23. PubMed ID: 11053386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The subcellular location of the yeast Saccharomyces cerevisiae homologue of the protein defective in the juvenile form of Batten disease.
    Croopnick JB; Choi HC; Mueller DM
    Biochem Biophys Res Commun; 1998 Sep; 250(2):335-41. PubMed ID: 9753630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BTN1, a yeast gene corresponding to the human gene responsible for Batten's disease, is not essential for viability, mitochondrial function, or degradation of mitochondrial ATP synthase.
    Pearce DA; Sherman F
    Yeast; 1997 Jun; 13(8):691-7. PubMed ID: 9219333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A yeast model for the study of Batten disease.
    Pearce DA; Sherman F
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6915-8. PubMed ID: 9618513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role in vacuolar arginine transport for yeast Btn1p and for human CLN3, the protein defective in Batten disease.
    Kim Y; Ramirez-Montealegre D; Pearce DA
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15458-62. PubMed ID: 14660799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution.
    Padilla-López S; Langager D; Chan CH; Pearce DA
    Dis Model Mech; 2012 Mar; 5(2):191-9. PubMed ID: 22107873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Btn1 affects cytokinesis and cell-wall deposition by independent mechanisms, one of which is linked to dysregulation of vacuole pH.
    Codlin S; Haines RL; Burden JJ; Mole SE
    J Cell Sci; 2008 Sep; 121(Pt 17):2860-70. PubMed ID: 18697832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole.
    Padilla-López S; Pearce DA
    J Biol Chem; 2006 Apr; 281(15):10273-80. PubMed ID: 16423829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of btn1, an orthologue of CLN3, increases glycolysis and perturbs amino acid metabolism in the fission yeast model of Batten disease.
    Pears MR; Codlin S; Haines RL; White IJ; Mortishire-Smith RJ; Mole SE; Griffin JL
    Mol Biosyst; 2010 Jun; 6(6):1093-102. PubMed ID: 20485751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective lysosomal arginine transport in juvenile Batten disease.
    Ramirez-Montealegre D; Pearce DA
    Hum Mol Genet; 2005 Dec; 14(23):3759-73. PubMed ID: 16251196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the CLN3 gene and predicted structure, location and function of CLN3 protein.
    Mitchison HM; Taschner PE; Kremmidiotis G; Callen DF; Doggett NA; Lerner TJ; Janes RB; Wallace BA; Munroe PB; O'Rawe AM; Gardiner RM; Mole SE
    Neuropediatrics; 1997 Feb; 28(1):12-4. PubMed ID: 9151311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-dependent localization of Btn1p in the yeast model for Batten disease.
    Wolfe DM; Padilla-Lopez S; Vitiello SP; Pearce DA
    Dis Model Mech; 2011 Jan; 4(1):120-5. PubMed ID: 20959629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered gene expression in the eye of a mouse model for batten disease.
    Chattopadhyay S; Kingsley E; Serour A; Curran TM; Brooks AI; Pearce DA
    Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):2893-905. PubMed ID: 15326100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of the neuronal ceroid lipofuscinoses: mutations in CLN1, CLN2, CLN3, and CLN5.
    Mole SE; Mitchison HM; Munroe PB
    Hum Mutat; 1999; 14(3):199-215. PubMed ID: 10477428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.