These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 103200)

  • 1. Transient synapses in the embryonic primate spinal cord.
    Knyihar E; Csillik B; Rakic P
    Science; 1978 Dec; 202(4373):1206-9. PubMed ID: 103200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of glomerular synaptic complexes and immunohistochemical differentiation in the superficial dorsal horn of the embryonic primate spinal cord.
    Knyihar-Csillik E; Rakic P; Csillik B
    Anat Embryol (Berl); 1999 Feb; 199(2):125-48. PubMed ID: 9930620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periterminal synaptology of dorsal root glomerular terminals in the substantia gelatinosa of the spinal cord in the rhesus monkey.
    Knyihar-Csillik E; Csillik B; Rakic P
    J Comp Neurol; 1982 Oct; 210(4):376-99. PubMed ID: 7142448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the early development of axodendritic and axosomatic synapses upon embryonic mouse spinal motor neurons.
    Vaughn JE; Sims T; Nakashima M
    J Comp Neurol; 1977 Sep; 175(1):79-100. PubMed ID: 886027
    [No Abstract]   [Full Text] [Related]  

  • 5. Structure of the embryonic primate spinal cord at the closure of the first reflex arc.
    Knyihar-Csillik E; Csillik B; Rakic P
    Anat Embryol (Berl); 1995 Jun; 191(6):519-40. PubMed ID: 7677259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative numbers of several types of synaptic connections in the substantia gelatinosa of the cat spinal cord.
    Duncan D; Morales R
    J Comp Neurol; 1978 Dec; 182(4):601-10. PubMed ID: 721970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendroaxonic synapses in the substantia gelatinosa glomeruli of the spinal trigeminal nucleus of the cat.
    Gobell S
    J Comp Neurol; 1976 May; 167(2):165-76. PubMed ID: 932238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Formation of intricate synaptic complexes in cultures of dissociated spinal cord and spinal ganglia cells].
    Skibo GG; Viktorov IV; Koval' LM
    Dokl Akad Nauk SSSR; 1984; 276(3):729-31. PubMed ID: 6468266
    [No Abstract]   [Full Text] [Related]  

  • 9. Fine structural relationships between neurites and radial glial processes in developing mouse spinal cord.
    Henrikson CK; Vaughn JE
    J Neurocytol; 1974 Dec; 3(6):659-75. PubMed ID: 4461770
    [No Abstract]   [Full Text] [Related]  

  • 10. Morphology and synaptic relationships of physiologically identified low-threshold dorsal root axons stained with intra-axonal horseradish peroxidase in the cat and monkey.
    Ralston HJ; Light AR; Ralston DD; Perl ER
    J Neurophysiol; 1984 Apr; 51(4):777-92. PubMed ID: 6201596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Afferent fibers in the substantia gelatinosa of the adult monkey (Macaca mulatta): a Golgi study.
    Beal JA; Fox CA
    J Comp Neurol; 1976 Jul; 168(1):113-43. PubMed ID: 819467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An EM analysis of the synaptic connections of horseradish peroxidase-filled stalked cells and islet cells in the substantia gelatinosa of adult cat spinal cord.
    Gobel S; Falls WM; Bennett GJ; Abdelmoumene M; Hayashi H; Humphrey E
    J Comp Neurol; 1980 Dec; 194(4):781-807. PubMed ID: 6259218
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord.
    LaMotte C
    J Comp Neurol; 1977 Apr; 172(3):529-61. PubMed ID: 402397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructure of marginal zone during prenatal development of human spinal cord.
    Rizvi TA; Wadhwa S; Mehra RD; Bijlani V
    Exp Brain Res; 1986; 64(3):483-90. PubMed ID: 3803486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine structure of growth cones in the upper dorsal horn of the adult primate spinal cord in the course of reactive synapto-neogenesis.
    Knyihár-Csillik E; Rakic P; Csillik B
    Cell Tissue Res; 1985; 239(3):633-41. PubMed ID: 2580631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fine structure of laminae I, II and III of the macaque spinal cord.
    Ralston HJ
    J Comp Neurol; 1979 Apr; 184(4):619-42. PubMed ID: 106073
    [No Abstract]   [Full Text] [Related]  

  • 17. Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord.
    Carlton SM; Hayes ES
    J Comp Neurol; 1990 Oct; 300(2):162-82. PubMed ID: 2258461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface specializations of neurites in embryonic mouse spinal cord.
    Vaughn JE; Henrikson CK
    Brain Res; 1976 Jul; 110(3):431-45. PubMed ID: 947466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Immunoreactivity of the synapses on the primary afferent axons and sensory neurons of the spinal cord Lampetra fluviatilis].
    Adanina VO; Rio JP; Adanina AS; Reperan J; Veselkin NP
    Tsitologiia; 2008; 50(11):947-52. PubMed ID: 19140340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution of dorsal root axons to laminae IV, V, and VI of the Macaque spinal cord: a quantitative electron microscopic study.
    Ralston HJ; Ralston DD
    J Comp Neurol; 1982 Dec; 212(4):435-48. PubMed ID: 6891705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.