These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 10320315)

  • 21. Estimation of transient temperature elevation in lithotripsy and in ultrasonography.
    Filipczyński L; Wójcik J
    Ultrasound Med Biol; 1991; 17(7):715-21. PubMed ID: 1781075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ human obstetrical ultrasound exposimetry: estimates of derating factors for each of three different tissue models.
    Siddiqi TA; O'Brien WD; Meyer RA; Sullivan JM; Miodovnik M
    Ultrasound Med Biol; 1995; 21(3):379-91. PubMed ID: 7645129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Attenuation coefficient and propagation speed estimates of rat and pig intercostal tissue as a function of temperature.
    Towa RT; Miller RJ; Frizzell LA; Zachary JF; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Oct; 49(10):1411-20. PubMed ID: 12403142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature elevation in a beam of ultrasound.
    Nyborg WL; Steele RB
    Ultrasound Med Biol; 1983; 9(6):611-20. PubMed ID: 6670146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal and heart rate response to ultrasonic exposure in the second and third trimester dog fetus.
    Gross DR; Williams AR; Wagner-Mann C; McCord F; Miller DL
    J Ultrasound Med; 1986 Sep; 5(9):507-13. PubMed ID: 3761413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of variations in blood flow on pulsed doppler ultrasonic heating of the cerebral cortex of the neonatal pig.
    Duggan PM; Murcott MF; McPhee AJ; Barnett SB
    Ultrasound Med Biol; 2000 May; 26(4):647-54. PubMed ID: 10856628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose.
    Damianou CA; Sanghvi NT; Fry FJ; Maass-Moreno R
    J Acoust Soc Am; 1997 Jul; 102(1):628-34. PubMed ID: 9228822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Losses in tissue associated with finite amplitude ultrasound transmission.
    Fry FJ; Dines KA; Reilly CR; Goss SA
    Ultrasound Med Biol; 1989; 15(5):481-97. PubMed ID: 2781679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thickness of tissues intervening between the transducer and fetus and models for fetal exposure calculations in transvaginal sonography.
    Kossoff G; Griffiths KA; Garrett WJ; Warren PS; Roberts AB; Mitchell JM
    Ultrasound Med Biol; 1993; 19(1):59-65. PubMed ID: 8456529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of ultrasonic pulse propagation through the abdominal wall.
    Mast TD; Hinkelman LM; Orr MJ; Sparrow VW; Waag RC
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1177-90. PubMed ID: 9265762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A heterogeneous nonlinear attenuating full-wave model of ultrasound.
    Pinton GF; Dahl J; Rosenzweig S; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):474-88. PubMed ID: 19411208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.
    Amini MH; Sinclair AN; Coyle TW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):448-55. PubMed ID: 26829787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound.
    Draper DO; Castel JC; Castel D
    J Orthop Sports Phys Ther; 1995 Oct; 22(4):142-50. PubMed ID: 8535471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of nonlinear ultrasound propagation during hyperthermia treatments.
    Hynynen K
    Med Phys; 1991; 18(6):1156-63. PubMed ID: 1753899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radio frequency-induced temperature elevations in the human head considering small anatomical structures.
    Schmid G; Uberbacher R; Samaras T
    Radiat Prot Dosimetry; 2007; 124(1):15-20. PubMed ID: 17595205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations.
    Mast TD; Hinkelman LM; Orr MJ; Waag RC
    J Acoust Soc Am; 1998 Dec; 104(6):3651-64. PubMed ID: 9857522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency.
    Williams R; Cherin E; Lam TY; Tavakkoli J; Zemp RJ; Foster FS
    Phys Med Biol; 2006 Nov; 51(22):5809-24. PubMed ID: 17068366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature changes caused by the difference in the distance between the ultrasound transducer and bone during 1 mhz and 3 mhz continuous ultrasound: a phantom study.
    Ohwatashi A; Ikeda S; Harada K; Kamikawa Y; Yoshida A; Inoue K; Yanagida N; Fukudome K; Kiyama R; Ohshige T; Maeda T
    J Phys Ther Sci; 2015 Jan; 27(1):205-8. PubMed ID: 25642074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.