These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 10320315)
41. Broadband attenuation and nonlinear propagation in biological fluids: an experimental facility and measurements. Verma PK; Humphrey VF; Duck FA Ultrasound Med Biol; 2005 Dec; 31(12):1723-33. PubMed ID: 16344135 [TBL] [Abstract][Full Text] [Related]
42. The effect of abdominal wall morphology on ultrasonic pulse distortion. Part I. Measurements. Hinkelman LM; Mast TD; Metlay LA; Waag RC J Acoust Soc Am; 1998 Dec; 104(6):3635-49. PubMed ID: 9857521 [TBL] [Abstract][Full Text] [Related]
43. Temperature rise in a tissue-mimicking material generated by unfocused and focused ultrasonic transducers. Wu J; Chase JD; Zhu Z; Holzapfel TP Ultrasound Med Biol; 1992; 18(5):495-512. PubMed ID: 1509624 [TBL] [Abstract][Full Text] [Related]
44. Fetal depth and ultrasound path lengths through overlying tissues. Carson PL; Rubin JM; Chiang EH Ultrasound Med Biol; 1989; 15(7):629-39. PubMed ID: 2683290 [TBL] [Abstract][Full Text] [Related]
45. Properties of phantom tissuelike polymethylpentene in the frequency range 20-70 MHZ. Madsen EL; Deaner ME; Mehi J Ultrasound Med Biol; 2011 Aug; 37(8):1327-39. PubMed ID: 21723451 [TBL] [Abstract][Full Text] [Related]
46. Broadband measurements of the frequency dependence of attenuation coefficient and velocity in amniotic fluid, urine and human serum albumin solutions. Verma PK; Humphrey VF; Duck FA Ultrasound Med Biol; 2005 Oct; 31(10):1375-81. PubMed ID: 16223641 [TBL] [Abstract][Full Text] [Related]
47. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound. Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313 [TBL] [Abstract][Full Text] [Related]
48. Longitudinal nonlinear wave propagation through soft tissue. Valdez M; Balachandran B J Mech Behav Biomed Mater; 2013 Apr; 20():192-208. PubMed ID: 23510921 [TBL] [Abstract][Full Text] [Related]
49. Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy. Kodera S; Gomez-Tames J; Hirata A Biomed Eng Online; 2018 Jan; 17(1):1. PubMed ID: 29310661 [TBL] [Abstract][Full Text] [Related]
50. The role of quantitative Schlieren assessment of physiotherapy ultrasound fields in describing variations between tissue heating rates of different transducers. Johns LD; Demchak TJ; Straub SJ; Howard SM Ultrasound Med Biol; 2007 Dec; 33(12):1911-7. PubMed ID: 17698281 [TBL] [Abstract][Full Text] [Related]
51. Effects of 3.3-MHz ultrasound on caudal thigh muscle temperature in dogs. Levine D; Millis DL; Mynatt T Vet Surg; 2001; 30(2):170-4. PubMed ID: 11230771 [TBL] [Abstract][Full Text] [Related]
52. An attempt to reconstruct the lithotriptor shock wave pulse in kidney: possible temperature effects. FilipczyĆski L; Etienne J; Piechocki M Ultrasound Med Biol; 1992; 18(6-7):569-77. PubMed ID: 1413268 [TBL] [Abstract][Full Text] [Related]
53. Computation of temperature elevation in fetus due to radio-frequency exposure with a new thermal modeling. Hirata A; Ishii Y; Nomura T; Laakso I Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3753-6. PubMed ID: 24110547 [TBL] [Abstract][Full Text] [Related]
54. Multiple-frequency ultrasonic imaging by transmitting pulsed waves of two frequencies. Yoshizumi N; Saito S; Koyama D; Nakamura K; Ohya A; Akiyama I J Med Ultrason (2001); 2009 Jun; 36(2):53-60. PubMed ID: 27277084 [TBL] [Abstract][Full Text] [Related]
55. Comparison of tissue heating between manual and hands-free ultrasound techniques. Gulick DT Physiother Theory Pract; 2010 Feb; 26(2):100-6. PubMed ID: 20067359 [TBL] [Abstract][Full Text] [Related]
56. Temperature elevation in the rat fetus due to ultrasound exposure. Abraham V; Ziskin MC; Heyner S Ultrasound Med Biol; 1989; 15(5):443-9. PubMed ID: 2781677 [TBL] [Abstract][Full Text] [Related]
57. Catheter ultrasound phased-array transducers for thermal ablation: a feasibility study. Gentry KL; Sachedina N; Smith SW Ultrason Imaging; 2005 Apr; 27(2):89-100. PubMed ID: 16231838 [TBL] [Abstract][Full Text] [Related]
58. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. Zhou Y; Zhai L; Simmons R; Zhong P J Acoust Soc Am; 2006 Aug; 120(2):676-85. PubMed ID: 16938956 [TBL] [Abstract][Full Text] [Related]
59. Fabrication and Characterization of Single-Aperture 3.5-MHz BNT-Based Ultrasonic Transducer for Therapeutic Application. Taghaddos E; Ma T; Zhong H; Zhou Q; Wan MX; Safari A IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; 65(4):582-588. PubMed ID: 29610088 [TBL] [Abstract][Full Text] [Related]
60. Measurements of ultrasonic pulse arrival time differences produced by abdominal wall specimens. Sumino Y; Waag RC J Acoust Soc Am; 1991 Dec; 90(6):2924-30. PubMed ID: 1838560 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]