BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10320349)

  • 1. Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage.
    Cullinane C; Mazur SJ; Essigmann JM; Phillips DR; Bohr VA
    Biochemistry; 1999 May; 38(19):6204-12. PubMed ID: 10320349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of transcriptional stalling at cisplatin-damaged DNA.
    Damsma GE; Alt A; Brueckner F; Carell T; Cramer P
    Nat Struct Mol Biol; 2007 Dec; 14(12):1127-33. PubMed ID: 17994106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II.
    Rockx DA; Mason R; van Hoffen A; Barton MC; Citterio E; Bregman DB; van Zeeland AA; Vrieling H; Mullenders LH
    Proc Natl Acad Sci U S A; 2000 Sep; 97(19):10503-8. PubMed ID: 10973477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three transitions in the RNA polymerase II transcription complex during initiation.
    Holstege FC; Fiedler U; Timmers HT
    EMBO J; 1997 Dec; 16(24):7468-80. PubMed ID: 9405375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct.
    Mei Kwei JS; Kuraoka I; Horibata K; Ubukata M; Kobatake E; Iwai S; Handa H; Tanaka K
    Biochem Biophys Res Commun; 2004 Aug; 320(4):1133-8. PubMed ID: 15249207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA.
    Tornaletti S; Patrick SM; Turchi JJ; Hanawalt PC
    J Biol Chem; 2003 Sep; 278(37):35791-7. PubMed ID: 12829693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cisplatin-DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor.
    Zhai X; Beckmann H; Jantzen HM; Essigmann JM
    Biochemistry; 1998 Nov; 37(46):16307-15. PubMed ID: 9819223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and mechanistic analysis of the RNA polymerase II transcrption reaction at the human interleukin-2 promoter.
    Ferguson HA; Kugel JF; Goodrich JA
    J Mol Biol; 2001 Dec; 314(5):993-1006. PubMed ID: 11743717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro.
    Bassett E; Vaisman A; Havener JM; Masutani C; Hanaoka F; Chaney SG
    Biochemistry; 2003 Dec; 42(48):14197-206. PubMed ID: 14640687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC.
    Chen HT; Hahn S
    Cell; 2004 Oct; 119(2):169-80. PubMed ID: 15479635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro.
    Lee KB; Wang D; Lippard SJ; Sharp PA
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4239-44. PubMed ID: 11904382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA polymerase II blockage by cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase.
    Jung Y; Lippard SJ
    J Biol Chem; 2006 Jan; 281(3):1361-70. PubMed ID: 16275646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis.
    Kellinger MW; Park GY; Chong J; Lippard SJ; Wang D
    J Am Chem Soc; 2013 Sep; 135(35):13054-61. PubMed ID: 23927577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of the Ig kappa gene by promoter-proximal pausing of RNA polymerase II.
    Raschke EE; Albert T; Eick D
    J Immunol; 1999 Oct; 163(8):4375-82. PubMed ID: 10510378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors.
    Charlet-Berguerand N; Feuerhahn S; Kong SE; Ziserman H; Conaway JW; Conaway R; Egly JM
    EMBO J; 2006 Nov; 25(23):5481-91. PubMed ID: 17110932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assays for transcription elongation by RNA polymerase II using oligo(dC)-tailed template with single DNA damage.
    Kuraoka I; Tanaka K
    Methods Enzymol; 2006; 408():214-23. PubMed ID: 16793371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CPD damage recognition by transcribing RNA polymerase II.
    Brueckner F; Hennecke U; Carell T; Cramer P
    Science; 2007 Feb; 315(5813):859-62. PubMed ID: 17290000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing.
    Kadener S; Cramer P; Nogués G; Cazalla D; de la Mata M; Fededa JP; Werbajh SE; Srebrow A; Kornblihtt AR
    EMBO J; 2001 Oct; 20(20):5759-68. PubMed ID: 11598018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation.
    Yamamoto S; Watanabe Y; van der Spek PJ; Watanabe T; Fujimoto H; Hanaoka F; Ohkuma Y
    Mol Cell Biol; 2001 Jan; 21(1):1-15. PubMed ID: 11113176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction, analysis, and transcription of model nucleosomal templates.
    Walter W; Studitsky VM
    Methods; 2004 May; 33(1):18-24. PubMed ID: 15039083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.