BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 10320365)

  • 1. Rational design of alpha-keto triglyceride analogues as inhibitors for Staphylococcus hyicus lipase.
    Simons JW; Cox RC; Egmond MR; Verheij HM
    Biochemistry; 1999 May; 38(19):6346-51. PubMed ID: 10320365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sterically hindered triacylglycerol analogues as potent inhibitors of human digestive lipases.
    Constantinou-Kokotou V; Magrioti V; Verger R
    Chemistry; 2004 Mar; 10(5):1133-40. PubMed ID: 15007804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphonate analogues of triacylglycerols are potent inhibitors of lipase.
    Mannesse ML; Boots JW; Dijkman R; Slotboom AJ; van der Hijden HT; Egmond MR; Verheij HM; de Haas GH
    Biochim Biophys Acta; 1995 Oct; 1259(1):56-64. PubMed ID: 7492616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-reactivity relationships for the inhibition mechanism at the second alkyl-chain-binding site of cholesterol esterase and lipase.
    Lin G; Shieh CT; Ho HC; Chouhwang JY; Lin WY; Lu CP
    Biochemistry; 1999 Aug; 38(31):9971-81. PubMed ID: 10433704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel trifluoromethyl ketones as potent gastric lipase inhibitors.
    Kokotos G; Kotsovolou S; Verger R
    Chembiochem; 2003 Jan; 4(1):90-5. PubMed ID: 12512081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triacylglycerols based on 2-(N-tert-butoxycarbonylamino)oleic acid are potent inhibitors of pancreatic lipase.
    Magrioti V; Verger R; Constantinou-Kokotou V
    J Med Chem; 2004 Jan; 47(2):288-91. PubMed ID: 14711301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-depth study of tripeptide-based alpha-ketoheterocycles as inhibitors of thrombin. Effective utilization of the S1' subsite and its implications to structure-based drug design.
    Costanzo MJ; Almond HR; Hecker LR; Schott MR; Yabut SC; Zhang HC; Andrade-Gordon P; Corcoran TW; Giardino EC; Kauffman JA; Lewis JM; de Garavilla L; Haertlein BJ; Maryanoff BE
    J Med Chem; 2005 Mar; 48(6):1984-2008. PubMed ID: 15771442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying the substrate specificity of staphylococcal lipases.
    van Kampen MD; Verheij HM; Egmond MR
    Biochemistry; 1999 Jul; 38(29):9524-32. PubMed ID: 10413530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study.
    Miled N; Roussel A; Bussetta C; Berti-Dupuis L; Rivière M; Buono G; Verger R; Cambillau C; Canaan S
    Biochemistry; 2003 Oct; 42(40):11587-93. PubMed ID: 14529268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of phospholipase activity of Staphylococcus hyicus lipase.
    Tiesinga JJ; van Pouderoyen G; Nardini M; Ransac S; Dijkstra BW
    J Mol Biol; 2007 Aug; 371(2):447-56. PubMed ID: 17582438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bis-2-oxo amide triacylglycerol analogues: a novel class of potent human gastric lipase inhibitors.
    Kotsovolou S; Chiou A; Verger R; Kokotos G
    J Org Chem; 2001 Feb; 66(3):962-7. PubMed ID: 11430119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of 2-Oxo amide triacylglycerol analogues and study of their inhibition effect on pancreatic and gastric lipases.
    Kokotos G; Verger R; Chiou A
    Chemistry; 2000 Nov; 6(22):4211-7. PubMed ID: 11128286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent inhibitors for the qualitative and quantitative analysis of lipolytic enzymes.
    Scholze H; Stütz H; Paltauf F; Hermetter A
    Anal Biochem; 1999 Dec; 276(1):72-80. PubMed ID: 10585746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ortho effects for inhibition mechanisms of butyrylcholinesterase by o-substituted phenyl N-butyl carbamates and comparison with acetylcholinesterase, cholesterol esterase, and lipase.
    Lin G; Lee YR; Liu YC; Wu YG
    Chem Res Toxicol; 2005 Jul; 18(7):1124-31. PubMed ID: 16022504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and substrate specificity of Staphylococcus hyicus lipase.
    van Oort MG; Deveer AM; Dijkman R; Tjeenk ML; Verheij HM; de Haas GH; Wenzig E; Götz F
    Biochemistry; 1989 Nov; 28(24):9278-85. PubMed ID: 2611229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis, and evaluation of gamma-phosphono diester analogues of glutamate as highly potent inhibitors and active site probes of gamma-glutamyl transpeptidase.
    Han L; Hiratake J; Kamiyama A; Sakata K
    Biochemistry; 2007 Feb; 46(5):1432-47. PubMed ID: 17260973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sesquiterpene farnesol as a competitive inhibitor of lipase activity of Staphylococcus aureus.
    Kuroda M; Nagasaki S; Ito R; Ohta T
    FEMS Microbiol Lett; 2007 Aug; 273(1):28-34. PubMed ID: 17559400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme inhibitors as chemical tools to study enzyme catalysis: rational design, synthesis, and applications.
    Hiratake J
    Chem Rec; 2005; 5(4):209-28. PubMed ID: 16041744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of the surface-associated lipase of Staphylococcus saprophyticus.
    Sakinç T; Kleine B; Gatermann SG
    FEMS Microbiol Lett; 2007 Sep; 274(2):335-41. PubMed ID: 17645523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.