BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 10320478)

  • 1. Drosophila dSmad2 and Atr-I transmit activin/TGFbeta signals.
    Das P; Inoue H; Baker JC; Beppu H; Kawabata M; Harland RM; Miyazono K; Padgett RW
    Genes Cells; 1999 Feb; 4(2):123-34. PubMed ID: 10320478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Drosophila activin receptor baboon signals through dSmad2 and controls cell proliferation but not patterning during larval development.
    Brummel T; Abdollah S; Haerry TE; Shimell MJ; Merriam J; Raftery L; Wrana JL; O'Connor MB
    Genes Dev; 1999 Jan; 13(1):98-111. PubMed ID: 9887103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. R-Smad competition controls activin receptor output in Drosophila.
    Peterson AJ; Jensen PA; Shimell M; Stefancsik R; Wijayatonge R; Herder R; Raftery LA; O'Connor MB
    PLoS One; 2012; 7(5):e36548. PubMed ID: 22563507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct signaling of Drosophila Activin/TGF-beta family members.
    Gesualdi SC; Haerry TE
    Fly (Austin); 2007; 1(4):212-21. PubMed ID: 18820452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development.
    Faure S; Lee MA; Keller T; ten Dijke P; Whitman M
    Development; 2000 Jul; 127(13):2917-31. PubMed ID: 10851136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [TGFbeta, activin and SMAD signalling in thyroid cancer].
    Kimura ET; Matsuo SE; Ricarte-Filho JC
    Arq Bras Endocrinol Metabol; 2007 Jul; 51(5):683-9. PubMed ID: 17891231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus.
    Hoodless PA; Tsukazaki T; Nishimatsu S; Attisano L; Wrana JL; Thomsen GH
    Dev Biol; 1999 Mar; 207(2):364-79. PubMed ID: 10068469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of receptors and Smad proteins involved in activin signalling in a human epidermal keratinocyte cell line.
    Shimizu A; Kato M; Nakao A; Imamura T; ten Dijke P; Heldin CH; Kawabata M; Shimada S; Miyazono K
    Genes Cells; 1998 Feb; 3(2):125-34. PubMed ID: 9605406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads.
    Candia AF; Watabe T; Hawley SH; Onichtchouk D; Zhang Y; Derynck R; Niehrs C; Cho KW
    Development; 1997 Nov; 124(22):4467-80. PubMed ID: 9409665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of pathway-specific and inhibitory Smads in activin receptor signaling.
    Lebrun JJ; Takabe K; Chen Y; Vale W
    Mol Endocrinol; 1999 Jan; 13(1):15-23. PubMed ID: 9892009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways.
    Lagna G; Hata A; Hemmati-Brivanlou A; Massagué J
    Nature; 1996 Oct; 383(6603):832-6. PubMed ID: 8893010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenopus Smad4beta is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes.
    Howell M; Itoh F; Pierreux CE; Valgeirsdottir S; Itoh S; ten Dijke P; Hill CS
    Dev Biol; 1999 Oct; 214(2):354-69. PubMed ID: 10525340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling.
    Kato Y; Habas R; Katsuyama Y; Näär AM; He X
    Nature; 2002 Aug; 418(6898):641-6. PubMed ID: 12167862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both SMAD2 and SMAD3 mediate activin-stimulated expression of the follicle-stimulating hormone beta subunit in mouse gonadotrope cells.
    Bernard DJ
    Mol Endocrinol; 2004 Mar; 18(3):606-23. PubMed ID: 14701940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis.
    Nakayama T; Gardner H; Berg LK; Christian JL
    Genes Cells; 1998 Jun; 3(6):387-94. PubMed ID: 9734784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcriptional role of Smads and FAST (FoxH1) in TGFbeta and activin signalling.
    Attisano L; Silvestri C; Izzi L; Labbé E
    Mol Cell Endocrinol; 2001 Jun; 180(1-2):3-11. PubMed ID: 11451566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads.
    Kumar A; Novoselov V; Celeste AJ; Wolfman NM; ten Dijke P; Kuehn MR
    J Biol Chem; 2001 Jan; 276(1):656-61. PubMed ID: 11024047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis.
    Yeo CY; Chen X; Whitman M
    J Biol Chem; 1999 Sep; 274(37):26584-90. PubMed ID: 10473623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes.
    Liu F; Pouponnot C; Massagué J
    Genes Dev; 1997 Dec; 11(23):3157-67. PubMed ID: 9389648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGF-beta signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain.
    Zheng X; Wang J; Haerry TE; Wu AY; Martin J; O'Connor MB; Lee CH; Lee T
    Cell; 2003 Feb; 112(3):303-15. PubMed ID: 12581521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.