These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10320555)

  • 1. Energy filtering transmission electron microscopy using the new JEM-2010FEF.
    Tomokiyo Y; Matsumura S; Manabe T
    J Microsc; 1999 Apr; 194(1):210-218. PubMed ID: 10320555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of contrasts in atomic resolution electron spectroscopic images of planar defects in crystalline specimens.
    Navidi-Kasmai T; Kohl H
    Ultramicroscopy; 2000 Apr; 81(3-4):223-33. PubMed ID: 10782646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.
    Zheng C; Zhu Y; Lazar S; Etheridge J
    Phys Rev Lett; 2014 Apr; 112(16):166101. PubMed ID: 24815659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.
    Brodusch N; Demers H; Gauvin R
    J Microsc; 2013 Apr; 250(1):1-14. PubMed ID: 23346885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4D electron microscopy: principles and applications.
    Flannigan DJ; Zewail AH
    Acc Chem Res; 2012 Oct; 45(10):1828-39. PubMed ID: 22967215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative comparison of zero-loss and conventional electron diffraction from two-dimensional and thin three-dimensional protein crystals.
    Yonekura K; Maki-Yonekura S; Namba K
    Biophys J; 2002 May; 82(5):2784-97. PubMed ID: 11964264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier images feature of lattice fringes formed by low-loss electrons as observed using spatially-resolved EELS technique.
    Kimoto K; Matsui Y
    J Electron Microsc (Tokyo); 2001; 50(5):377-82. PubMed ID: 11794612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.
    Slater TJ; Lewis EA; Haigh SJ
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27403838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a 2k CCD camera with an epitaxially grown CsI scintillator for recording energy-filtered electron cryo-micrographs.
    Yasunaga T; Wakabayashi T
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):101-12. PubMed ID: 18467743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facility implementation and comparative performance evaluation of probe-corrected TEM/STEM with Schottky and cold field emission illumination.
    Xin Y; Kynoch J; Han K; Liang Z; Lee PJ; Larbalestier DC; Su YF; Nagahata K; Aoki T; Longo P
    Microsc Microanal; 2013 Apr; 19(2):487-95. PubMed ID: 23458469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and characterization of the fringe field monochromator for a field emission gun.
    Mook HW; Kruit P
    Ultramicroscopy; 2000 Apr; 81(3-4):129-39. PubMed ID: 10782638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annular electron energy-loss spectroscopy in the scanning transmission electron microscope.
    Ruben G; Bosman M; D'Alfonso AJ; Okunishi E; Kondo Y; Allen LJ
    Ultramicroscopy; 2011 Nov; 111(11):1540-6. PubMed ID: 21939618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refinement of crystal structural parameters using two-dimensional energy-filtered CBED patterns.
    Tsuda K; Tanaka M
    Acta Crystallogr A; 1999 Sep; 55(Pt 5):939-954. PubMed ID: 10927304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction.
    Krause FF; Rosenauer A; Barthel J; Mayer J; Urban K; Dunin-Borkowski RE; Brown HG; Forbes BD; Allen LJ
    Ultramicroscopy; 2017 Oct; 181():173-177. PubMed ID: 28601013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a monochromator for aberration-corrected scanning transmission electron microscopy.
    Mukai M; Okunishi E; Ashino M; Omoto K; Fukuda T; Ikeda A; Somehara K; Kaneyama T; Saitoh T; Hirayama T; Ikuhara Y
    Microscopy (Oxf); 2015 Jun; 64(3):151-8. PubMed ID: 25654985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration.
    Zuo JM
    Microsc Res Tech; 2000 May; 49(3):245-68. PubMed ID: 10816266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging faces of shadowed magnetite (Fe(3)O(4)) crystals from magnetotactic bacteria with energy-filtering transmission electron microscopy.
    Lins U; Kachar B; Farina M
    Microsc Res Tech; 1999 Aug 15-Sep 1; 46(4-5):319-24. PubMed ID: 10469468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The New Methodology and Chemical Contrast Observation by Use of the Energy-Selective Back-Scattered Electron Detector.
    Drab M; Krajniak J; Grzelakowski KP
    Microsc Microanal; 2016 Dec; 22(6):1369-1373. PubMed ID: 27974076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic and inelastic electrons in the double-slit experiment: A variant of Feynman's which-way set-up.
    Frabboni S; Gazzadi GC; Grillo V; Pozzi G
    Ultramicroscopy; 2015 Jul; 154():49-56. PubMed ID: 25799917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.