These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 10320665)

  • 1. The reactions of copper proteins with nitric oxide.
    Torres J; Wilson MT
    Biochim Biophys Acta; 1999 May; 1411(2-3):310-22. PubMed ID: 10320665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide intermediate.
    Torres J; Svistunenko D; Karlsson B; Cooper CE; Wilson MT
    J Am Chem Soc; 2002 Feb; 124(6):963-7. PubMed ID: 11829603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of nitric oxide with copper containing oxidases; cytochrome c oxidase and laccase.
    Wilson MT; Torres J
    IUBMB Life; 2004 Jan; 56(1):7-11. PubMed ID: 14992374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NO binding and dynamics in reduced heme-copper oxidases aa3 from Paracoccus denitrificans and ba3 from Thermus thermophilus.
    Pilet E; Nitschke W; Rappaport F; Soulimane T; Lambry JC; Liebl U; Vos MH
    Biochemistry; 2004 Nov; 43(44):14118-27. PubMed ID: 15518562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrite reactivity of the binuclear copper site in T2D Rhus laccase: preparation of half met-NO2- T2D laccase and its correlation to half met-NO2- hemocyanin and tyrosinase.
    Spira DJ; Solomon EI
    Biochem Biophys Res Commun; 1983 Apr; 112(2):729-36. PubMed ID: 6303331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. THE ROLE OF COPPER IN THE CATALYTIC ACTION OF LACCASE AND CERULOPLASMIN.
    BROMAN L; MALMSTROEM BG; AASA R
    Biochim Biophys Acta; 1963 Nov; 75():365-76. PubMed ID: 14104946
    [No Abstract]   [Full Text] [Related]  

  • 7. Copper proteins and oxygen. Correlations between structure and function of the copper oxidases.
    Frieden E; Osaki S; Kobayashi H
    J Gen Physiol; 1965 Sep; 49(1):Suppl:213-52. PubMed ID: 4285728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of nitric oxide with a functional model of cytochrome c oxidase.
    Collman JP; Dey A; Decreau RA; Yang Y; Hosseini A; Solomon EI; Eberspacher TA
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9892-6. PubMed ID: 18632561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of nitric oxide with tree and fungal laccase.
    Martin CT; Morse RH; Kanne RM; Gray HB; Malmström BG; Chan SI
    Biochemistry; 1981 Sep; 20(18):5147-55. PubMed ID: 6271178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of O
    Blomberg MRA
    Chem Soc Rev; 2020 Oct; 49(20):7301-7330. PubMed ID: 33006348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):884-894. PubMed ID: 28801051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The photoreactivity of the copper-NO complexes in cytochrome c oxidase and in other copper-containing proteins.
    Wever R; Boelens R; De Boer E; Van Gelder BF; Gorren AC; Rademaker H
    J Inorg Biochem; 1985; 23(3-4):227-32. PubMed ID: 2991461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray structure of the NO-bound Cu(B) in bovine cytochrome c oxidase.
    Ohta K; Muramoto K; Shinzawa-Itoh K; Yamashita E; Yoshikawa S; Tsukihara T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Mar; 66(Pt 3):251-3. PubMed ID: 20208153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of nitric oxide with ceruloplasmin lacking an EPR-detectable type 2 copper.
    Musci G; Di Marco S; Bonaccorsi di Patti MC; Calabrese L
    Biochemistry; 1991 Oct; 30(41):9866-72. PubMed ID: 1655023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal of cyanide inhibition of cytochrome c oxidase by the auxiliary substrate nitric oxide: an endogenous antidote to cyanide poisoning?
    Pearce LL; Bominaar EL; Hill BC; Peterson J
    J Biol Chem; 2003 Dec; 278(52):52139-45. PubMed ID: 14534303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide.
    Zhao XJ; Sampath V; Caughey WS
    Biochem Biophys Res Commun; 1995 Jul; 212(3):1054-60. PubMed ID: 7626092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of nitric oxide with cytochrome c oxidase: interactions with the binuclear centre and mechanism of inhibition.
    Torres J; Cooper CE; Sharpe M; Wilson MT
    J Bioenerg Biomembr; 1998 Feb; 30(1):63-9. PubMed ID: 9623807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of nitric oxide with ascorbate oxidase.
    Leeuwen FX; Wever R; Gelder BF; Avigliano L; Mondovi B
    Biochim Biophys Acta; 1975 Oct; 403(2):285-91. PubMed ID: 170967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic?
    Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2013 Jul; 1827(7):826-33. PubMed ID: 23618787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. O2 and N2O activation by Bi-, Tri-, and tetranuclear Cu clusters in biology.
    Solomon EI; Sarangi R; Woertink JS; Augustine AJ; Yoon J; Ghosh S
    Acc Chem Res; 2007 Jul; 40(7):581-91. PubMed ID: 17472331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.