These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Persistent adhesion of epithelial tissue is sensitive to polymer topography. Evans MD; Dalton BA; Steele JG J Biomed Mater Res; 1999 Sep; 46(4):485-93. PubMed ID: 10398009 [TBL] [Abstract][Full Text] [Related]
3. Polymer design for corneal epithelial tissue adhesion: pore density. Evans MD; Taylor S; Dalton BA; Lohmann D J Biomed Mater Res A; 2003 Feb; 64(2):357-64. PubMed ID: 12522823 [TBL] [Abstract][Full Text] [Related]
4. Surface topography can interfere with epithelial tissue migration. Fitton JH; Dalton BA; Beumer G; Johnson G; Griesser HJ; Steele JG J Biomed Mater Res; 1998 Nov; 42(2):245-57. PubMed ID: 9773820 [TBL] [Abstract][Full Text] [Related]
5. Effect of porosity and surface hydrophilicity on migration of epithelial tissue over synthetic polymer. Steele JG; Johnson G; McLean KM; Beumer GJ; Griesser HJ J Biomed Mater Res; 2000 Jun; 50(4):475-82. PubMed ID: 10756305 [TBL] [Abstract][Full Text] [Related]
6. Stimulation of epithelial tissue migration by certain porous topographies is independent of fluid flux. Dalton BA; McFarland GA; Steele JG J Biomed Mater Res; 2001 Jul; 56(1):83-92. PubMed ID: 11309794 [TBL] [Abstract][Full Text] [Related]
7. The influence of surface topography of a porous perfluoropolyether polymer on corneal epithelial tissue growth and adhesion. Evans MD; Chaouk H; Wilkie JS; Dalton BA; Taylor S; Xie RZ; Hughes TC; Johnson G; McFarland GA; Griesser HH; Steele JG; Meijs GF; Sweeney DF; McLean KM Biomaterials; 2011 Dec; 32(34):8870-9. PubMed ID: 21899881 [TBL] [Abstract][Full Text] [Related]
8. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Abrams GA; Goodman SL; Nealey PF; Franco M; Murphy CJ Cell Tissue Res; 2000 Jan; 299(1):39-46. PubMed ID: 10654068 [TBL] [Abstract][Full Text] [Related]
9. A comparison of biological coatings for the promotion of corneal epithelialization of synthetic surface in vivo. Sweeney DF; Xie RZ; Evans MD; Vannas A; Tout SD; Griesser HJ; Johnson G; Steele JG Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3301-9. PubMed ID: 12882774 [TBL] [Abstract][Full Text] [Related]
10. Nano- and sub-micron porous polyelectrolyte multilayer assemblies: biomimetic surfaces for human corneal epithelial cells. Hajicharalambous CS; Lichter J; Hix WT; Swierczewska M; Rubner MF; Rajagopalan P Biomaterials; 2009 Aug; 30(23-24):4029-36. PubMed ID: 19446874 [TBL] [Abstract][Full Text] [Related]
11. The architecture of a collagen coating on a synthetic polymer influences epithelial adhesion. Evans MD; McFarland GA; Taylor S; Johnson G; McLean KM J Biomed Mater Res; 2001 Sep; 56(4):461-8. PubMed ID: 11400123 [TBL] [Abstract][Full Text] [Related]
12. Impact of brief exposure to balanced salts solution or cetylpyridinium chloride on the surface appearance of the rabbit corneal epithelium--a scanning electron microscopy study. Doughty MJ Curr Eye Res; 2003 Jun; 26(6):335-46. PubMed ID: 12868014 [TBL] [Abstract][Full Text] [Related]
13. Polymer surface chemistry and a novel attachment mechanism in corneal epithelial cells. Evans MD; Steele JG J Biomed Mater Res; 1998 Jun; 40(4):621-30. PubMed ID: 9599039 [TBL] [Abstract][Full Text] [Related]
14. The Role of Titanium Surface Microtopography on Adhesion, Proliferation, Transformation, and Matrix Deposition of Corneal Cells. Zhou C; Lei F; Chodosh J; Paschalis EI Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):1927-38. PubMed ID: 27092719 [TBL] [Abstract][Full Text] [Related]
15. Effects of surface topography on corneal epithelialization in vivo: a preliminary study. Xie RZ; Sweeney DF; Griesser HJ; Steele JG Aust N Z J Ophthalmol; 1998 May; 26 Suppl 1():S47-9. PubMed ID: 9685021 [TBL] [Abstract][Full Text] [Related]
16. Epithelialization of a synthetic polymer in the feline cornea: a preliminary study. Evans MD; Xie RZ; Fabbri M; Madigan MC; Chaouk H; Beumer GJ; Meijs GF; Griesser HJ; Steele JG; Sweeney DF Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1674-80. PubMed ID: 10845584 [TBL] [Abstract][Full Text] [Related]
17. Electron microscopy of the canine corneal basement membranes. Abrams GA; Bentley E; Nealey PF; Murphy CJ Cells Tissues Organs; 2002; 170(4):251-7. PubMed ID: 11919413 [TBL] [Abstract][Full Text] [Related]
18. Superficial topography and porosity of an absorbable barrier membrane impacts soft tissue response in guided bone regeneration. de Santana RB; de Mattos CM; Francischone CE; Van Dyke T J Periodontol; 2010 Jun; 81(6):926-33. PubMed ID: 20380512 [TBL] [Abstract][Full Text] [Related]
19. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586 [TBL] [Abstract][Full Text] [Related]
20. Scanning electron microscopy study of the tarsal and orbital conjunctival surfaces compared to peripheral corneal epithelium in pigmented rabbits. Doughty MJ Doc Ophthalmol; 1997; 93(4):345-71. PubMed ID: 9665292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]