BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 10321735)

  • 61. Functional analysis of the regulatory requirements of B-Raf and the B-Raf(V600E) oncoprotein.
    Brummer T; Martin P; Herzog S; Misawa Y; Daly RJ; Reth M
    Oncogene; 2006 Oct; 25(47):6262-76. PubMed ID: 16702958
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells.
    Roux P; Gauthier-Rouvière C; Doucet-Brutin S; Fort P
    Curr Biol; 1997 Sep; 7(9):629-37. PubMed ID: 9285711
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fusion of the binding domain of Raf-1 kinase with green fluorescent protein for activated Ras detection by fluorescence correlation spectroscopy.
    Trier U; Olah Z; Kleuser B; Schäfer-Korting M
    Pharmazie; 1999 Apr; 54(4):263-8. PubMed ID: 10234739
    [TBL] [Abstract][Full Text] [Related]  

  • 64. GTP-dependent association of Raf-1 with Ha-Ras: identification of Raf as a target downstream of Ras in mammalian cells.
    Koide H; Satoh T; Nakafuku M; Kaziro Y
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8683-6. PubMed ID: 8378348
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Critical role of Rho in cell transformation by oncogenic Ras.
    Prendergast GC; Khosravi-Far R; Solski PA; Kurzawa H; Lebowitz PF; Der CJ
    Oncogene; 1995 Jun; 10(12):2289-96. PubMed ID: 7784077
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation of temperature-sensitive mutations in the c-raf-1 catalytic domain and expression of conditionally active and dominant-defective forms of Raf-1 in cultured mammalian cells.
    Lu KK; Bazarov AV; Yoon LS; Sedivy JM
    Cell Growth Differ; 1998 May; 9(5):367-80. PubMed ID: 9607558
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analyses of TC21/R-Ras2 signaling and biological activity.
    Graham SM; Rogers-Graham K; Figueroa C; Der CJ; Vojtek AB
    Methods Enzymol; 2001; 333():203-16. PubMed ID: 11400337
    [No Abstract]   [Full Text] [Related]  

  • 68. Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts.
    Tang Y; Chen Z; Ambrose D; Liu J; Gibbs JB; Chernoff J; Field J
    Mol Cell Biol; 1997 Aug; 17(8):4454-64. PubMed ID: 9234703
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Raf-1 mutant that dissociates MEK/extracellular signal-regulated kinase activation from malignant transformation and differentiation but not proliferation.
    Dhillon AS; Meikle S; Peyssonnaux C; Grindlay J; Kaiser C; Steen H; Shaw PE; Mischak H; Eychène A; Kolch W
    Mol Cell Biol; 2003 Mar; 23(6):1983-93. PubMed ID: 12612072
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Peptides containing a consensus Ras binding sequence from Raf-1 and theGTPase activating protein NF1 inhibit Ras function.
    Clark GJ; Drugan JK; Terrell RS; Bradham C; Der CJ; Bell RM; Campbell S
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1577-81. PubMed ID: 8643674
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation.
    Grammatikakis N; Vultur A; Ramana CV; Siganou A; Schweinfest CW; Watson DK; Raptis L
    J Biol Chem; 2002 Mar; 277(10):8312-20. PubMed ID: 11751906
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of mitogen-activated protein kinases in the induction of parathyroid hormone-related peptide.
    Aklilu F; Gladu J; Goltzman D; Rabbani SA
    Cancer Res; 2000 Mar; 60(6):1753-60. PubMed ID: 10749150
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Different structural organization of Ras and Rho effector domains.
    Self AJ; Paterson HF; Hall A
    Oncogene; 1993 Mar; 8(3):655-61. PubMed ID: 8437849
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Increasing complexity of Ras signaling.
    Campbell SL; Khosravi-Far R; Rossman KL; Clark GJ; Der CJ
    Oncogene; 1998 Sep; 17(11 Reviews):1395-413. PubMed ID: 9779987
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways.
    Westwick JK; Lambert QT; Clark GJ; Symons M; Van Aelst L; Pestell RG; Der CJ
    Mol Cell Biol; 1997 Mar; 17(3):1324-35. PubMed ID: 9032259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ha-ras and N-ras regulate MAPK activity by distinct mechanisms in vivo.
    Hamilton M; Wolfman A
    Oncogene; 1998 Mar; 16(11):1417-28. PubMed ID: 9525741
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase.
    McFall A; Ulkü A; Lambert QT; Kusa A; Rogers-Graham K; Der CJ
    Mol Cell Biol; 2001 Aug; 21(16):5488-99. PubMed ID: 11463831
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Specific association of Mil/Raf proteins with a 34 kDa phosphoprotein.
    Lovrić J; Radziwill G; Moelling K
    Oncogene; 1996 Mar; 12(5):1145-51. PubMed ID: 8649807
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The ras-related GTPase rac1 regulates a proliferative pathway selectively utilized by G-protein coupled receptors.
    Burstein ES; Hesterberg DJ; Gutkind JS; Brann MR; Currier EA; Messier TL
    Oncogene; 1998 Sep; 17(12):1617-23. PubMed ID: 9794239
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mas oncogene signaling and transformation require the small GTP-binding protein Rac.
    Zohn IE; Symons M; Chrzanowska-Wodnicka M; Westwick JK; Der CJ
    Mol Cell Biol; 1998 Mar; 18(3):1225-35. PubMed ID: 9488437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.