BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 10322055)

  • 1. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory.
    Wada Y; Kaneko Y; Nakano E; Osu R; Kawato M
    Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can a kinetic optimization criterion predict both arm trajectory and final arm posture?
    Wada Y; Yamanaka K; Soga Y; Tsuyuki K; Kawato M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1197-200. PubMed ID: 17946449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of isochrony phenomenon based on the computational theory of human arm trajectory planning.
    Yokoyama H; Saito H; Kurai R; Nambu I; Wada Y
    Hum Mov Sci; 2018 Oct; 61():52-62. PubMed ID: 30015096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.
    Wolpert DM; Ghahramani Z; Jordan MI
    Exp Brain Res; 1995; 103(3):460-70. PubMed ID: 7789452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.
    Kudo N; Choi K; Kagawa T; Uno Y
    Neural Comput; 2016 May; 28(5):950-69. PubMed ID: 26942751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model.
    Uno Y; Kawato M; Suzuki R
    Biol Cybern; 1989; 61(2):89-101. PubMed ID: 2742921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional control of planar human arm movement.
    Gottlieb GL; Song Q; Almeida GL; Hong DA; Corcos D
    J Neurophysiol; 1997 Dec; 78(6):2985-98. PubMed ID: 9405518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Errors in the control of joint rotations associated with inaccuracies in overarm throws.
    Hore J; Watts S; Tweed D
    J Neurophysiol; 1996 Mar; 75(3):1013-25. PubMed ID: 8867114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic construction of the trajectory of sequential arm movements.
    Okadome T; Honda M
    Biol Cybern; 1999 Mar; 80(3):157-69. PubMed ID: 10192899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
    Galloway JC; Koshland GF
    Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinated turn-and-reach movements. II. Planning in an external frame of reference.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):290-303. PubMed ID: 12522180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of kinematic invariances of multijoint reaching movement.
    Goodman SR; Gottlieb GL
    Biol Cybern; 1995 Sep; 73(4):311-22. PubMed ID: 7578472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of the minimum-jerk and minimum torque-change principles at the path, trajectory, and movement-cost levels.
    Klein Breteler MD; Meulenbroek RG; Gielen SC
    Motor Control; 2002 Jan; 6(1):69-83. PubMed ID: 11890147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End-point constraints in aiming movements: effects of approach angle and speed.
    Klein Breteler MD; Gielen SC; Meulenbroek RG
    Biol Cybern; 2001 Jul; 85(1):65-75. PubMed ID: 11471841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.
    Bastian AJ; Martin TA; Keating JG; Thach WT
    J Neurophysiol; 1996 Jul; 76(1):492-509. PubMed ID: 8836239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trajectory formation of the center-of-mass of the arm during reaching movements.
    Suzuki M; Yamazaki Y; Mizuno N; Matsunami K
    Neuroscience; 1997 Jan; 76(2):597-610. PubMed ID: 9015341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.