These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 10322110)

  • 1. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation.
    Novitch BG; Spicer DB; Kim PS; Cheung WL; Lassar AB
    Curr Biol; 1999 May; 9(9):449-59. PubMed ID: 10322110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C.
    Sartorelli V; Huang J; Hamamori Y; Kedes L
    Mol Cell Biol; 1997 Feb; 17(2):1010-26. PubMed ID: 9001254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis.
    Puri PL; Iezzi S; Stiegler P; Chen TT; Schiltz RL; Muscat GE; Giordano A; Kedes L; Wang JY; Sartorelli V
    Mol Cell; 2001 Oct; 8(4):885-97. PubMed ID: 11684023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation.
    Deng X; Ewton DZ; Mercer SE; Friedman E
    J Biol Chem; 2005 Feb; 280(6):4894-905. PubMed ID: 15546868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of pRb is required for HGF-induced muscle cell proliferation and is p27kip1-dependent.
    Leshem Y; Halevy O
    J Cell Physiol; 2002 May; 191(2):173-82. PubMed ID: 12064460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle.
    Novitch BG; Mulligan GJ; Jacks T; Lassar AB
    J Cell Biol; 1996 Oct; 135(2):441-56. PubMed ID: 8896600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation.
    Lazaro JB; Bailey PJ; Lassar AB
    Genes Dev; 2002 Jul; 16(14):1792-805. PubMed ID: 12130539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2.
    Black BL; Molkentin JD; Olson EN
    Mol Cell Biol; 1998 Jan; 18(1):69-77. PubMed ID: 9418854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells.
    Ridgeway AG; Wilton S; Skerjanc IS
    J Biol Chem; 2000 Jan; 275(1):41-6. PubMed ID: 10617583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development.
    Wang DZ; Valdez MR; McAnally J; Richardson J; Olson EN
    Development; 2001 Nov; 128(22):4623-33. PubMed ID: 11714687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo.
    Dodou E; Xu SM; Black BL
    Mech Dev; 2003 Sep; 120(9):1021-32. PubMed ID: 14550531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist.
    Spicer DB; Rhee J; Cheung WL; Lassar AB
    Science; 1996 Jun; 272(5267):1476-80. PubMed ID: 8633239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel functional co-operation between MyoD, MEF2 and TRalpha1 is sufficient for the induction of GLUT4 gene transcription.
    Santalucía T; Moreno H; Palacín M; Yacoub MH; Brand NJ; Zorzano A
    J Mol Biol; 2001 Nov; 314(2):195-204. PubMed ID: 11718554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular localization of the steroid receptor coactivators (SRCs) and MEF2 in muscle and rhabdomyosarcoma cells.
    Chen SL; Wang SC; Hosking B; Muscat GE
    Mol Endocrinol; 2001 May; 15(5):783-96. PubMed ID: 11328858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation.
    Chen SL; Dowhan DH; Hosking BM; Muscat GE
    Genes Dev; 2000 May; 14(10):1209-28. PubMed ID: 10817756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of a dominant negative retinoblastoma protein (RB) inhibiting satellite myoblast differentiation implies an indirect interaction between MyoD and RB.
    Li FQ; Coonrod A; Horwitz M
    Mol Cell Biol; 2000 Jul; 20(14):5129-39. PubMed ID: 10866669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin.
    Joulia D; Bernardi H; Garandel V; Rabenoelina F; Vernus B; Cabello G
    Exp Cell Res; 2003 Jun; 286(2):263-75. PubMed ID: 12749855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct inhibition of G(1) cdk kinase activity by MyoD promotes myoblast cell cycle withdrawal and terminal differentiation.
    Zhang JM; Zhao X; Wei Q; Paterson BM
    EMBO J; 1999 Dec; 18(24):6983-93. PubMed ID: 10601020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation.
    Wilson EM; Tureckova J; Rotwein P
    Mol Biol Cell; 2004 Feb; 15(2):497-505. PubMed ID: 14595115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD.
    Halevy O; Novitch BG; Spicer DB; Skapek SX; Rhee J; Hannon GJ; Beach D; Lassar AB
    Science; 1995 Feb; 267(5200):1018-21. PubMed ID: 7863327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.