BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10322172)

  • 1. Regulation of the heat-shock response.
    Yura T; Nakahigashi K
    Curr Opin Microbiol; 1999 Apr; 2(2):153-8. PubMed ID: 10322172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.
    Nakahigashi K; Yanagi H; Yura T
    Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation.
    Ueki T; Inouye S
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress.
    Nonaka G; Blankschien M; Herman C; Gross CA; Rhodius VA
    Genes Dev; 2006 Jul; 20(13):1776-89. PubMed ID: 16818608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Regulation of Escherichia coli heat shock response].
    Liberek K
    Postepy Biochem; 1995; 41(2):94-102. PubMed ID: 7479445
    [No Abstract]   [Full Text] [Related]  

  • 9. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S
    Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-dependent expression of the CIRCE regulon in Streptococcus pneumoniae.
    Kwon HY; Kim SN; Pyo SN; Rhee DK
    Mol Microbiol; 2005 Jan; 55(2):456-68. PubMed ID: 15659163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins.
    Johansen J; Rasmussen AA; Overgaard M; Valentin-Hansen P
    J Mol Biol; 2006 Nov; 364(1):1-8. PubMed ID: 17007876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity.
    Horikoshi M; Yura T; Tsuchimoto S; Fukumori Y; Kanemori M
    J Bacteriol; 2004 Nov; 186(22):7474-80. PubMed ID: 15516558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of the Xanthomonas campestris rpoH gene coding for a 32-kDa heat shock sigma factor.
    Huang LH; Tseng YH; Yang MT
    Biochem Biophys Res Commun; 1998 Mar; 244(3):854-60. PubMed ID: 9535756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent insights into the general stress response regulatory network in Escherichia coli.
    Hengge-Aronis R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):341-6. PubMed ID: 11931567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE-HrcA interactions.
    Chang LJ; Chen WH; Minion FC; Shiuan D
    Biochem Biophys Res Commun; 2008 Feb; 367(1):213-8. PubMed ID: 18164681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli.
    Bianchi AA; Baneyx F
    Mol Microbiol; 1999 Dec; 34(5):1029-38. PubMed ID: 10594827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Heat shock inhibits the induced expression of the SOS genes and SoxRS regulons in Escherichia coli].
    Vasil'eva SV; Makhova EV
    Genetika; 2003 Aug; 39(8):1033-8. PubMed ID: 14515458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach.
    Obrist M; Narberhaus F
    J Bacteriol; 2005 Jun; 187(11):3807-13. PubMed ID: 15901705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens.
    Balsiger S; Ragaz C; Baron C; Narberhaus F
    J Bacteriol; 2004 Oct; 186(20):6824-9. PubMed ID: 15466035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.