These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10322193)

  • 1. Metabolic engineering of plants for osmotic stress resistance.
    Nuccio ML; Rhodes D; McNeil SD; Hanson AD
    Curr Opin Plant Biol; 1999 Apr; 2(2):128-34. PubMed ID: 10322193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of osmoprotectant accumulation in plants.
    Rontein D; Basset G; Hanson AD
    Metab Eng; 2002 Jan; 4(1):49-56. PubMed ID: 11800574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes.
    Chen TH; Murata N
    Curr Opin Plant Biol; 2002 Jun; 5(3):250-7. PubMed ID: 11960744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications.
    Chen TH; Murata N
    Plant Cell Environ; 2011 Jan; 34(1):1-20. PubMed ID: 20946588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance.
    Sakamoto A; Murata N
    J Exp Bot; 2000 Jan; 51(342):81-8. PubMed ID: 10938798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular biology of osmoregulation.
    Le Rudulier D; Strom AR; Dandekar AM; Smith LT; Valentine RC
    Science; 1984 Jun; 224(4653):1064-8. PubMed ID: 16827211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance.
    Hanson AD; Rathinasabapathi B; Rivoal J; Burnet M; Dillon MO; Gage DA
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):306-10. PubMed ID: 8278383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection.
    Daniell H; Muthukumar B; Lee SB
    Curr Genet; 2001 Apr; 39(2):109-16. PubMed ID: 11405095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycinebetaine: an effective protectant against abiotic stress in plants.
    Chen TH; Murata N
    Trends Plant Sci; 2008 Sep; 13(9):499-505. PubMed ID: 18703379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Gene engineering of salt tolerance in higher plants].
    Hayashi H; Sakamoto A; Murata N
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2221-9. PubMed ID: 10586660
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of levels of proline as an osmolyte in plants under water stress.
    Yoshiba Y; Kiyosue T; Nakashima K; Yamaguchi-Shinozaki K; Shinozaki K
    Plant Cell Physiol; 1997 Oct; 38(10):1095-102. PubMed ID: 9399433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.
    Rathinasabapathi B; McCue KF; Gage DA; Hanson AD
    Planta; 1994; 193(2):155-62. PubMed ID: 7764986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the plant cell factory for secondary metabolite production.
    Verpoorte R; van der Heijden R; Memelink J
    Transgenic Res; 2000; 9(4-5):323-43; discussion 321. PubMed ID: 11131010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.
    Missihoun TD; Willée E; Guegan JP; Berardocco S; Shafiq MR; Bouchereau A; Bartels D
    Plant Cell Physiol; 2015 Sep; 56(9):1798-807. PubMed ID: 26169197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03).
    Zhang H; Murzello C; Sun Y; Kim MS; Xie X; Jeter RM; Zak JC; Dowd SE; Paré PW
    Mol Plant Microbe Interact; 2010 Aug; 23(8):1097-104. PubMed ID: 20615119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants.
    Holmström KO; Welin B; Mandal A; Kristiansdottir I; Teeri TH; Lamark T; Strøm AR; Palva ET
    Plant J; 1994 Nov; 6(5):749-58. PubMed ID: 8000428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.
    Ishitani M; Nakamura T; Han SY; Takabe T
    Plant Mol Biol; 1995 Jan; 27(2):307-15. PubMed ID: 7888620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research progress in genetic engineering of plant secondary metabolism].
    Yang ZR; Mao X; Li RZ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):11-8. PubMed ID: 15692173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants.
    Yang X; Liang Z; Lu C
    Plant Physiol; 2005 Aug; 138(4):2299-309. PubMed ID: 16024688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose.
    Asaf S; Khan AL; Khan MA; Imran QM; Yun BW; Lee IJ
    Microbiol Res; 2017 Dec; 205():135-145. PubMed ID: 28942839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.