BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 10322924)

  • 1. Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion.
    Li XJ; Zhang LM; Gu J; Zhang AZ; Sun FY
    Zhongguo Yao Li Xue Bao; 1997 Sep; 18(5):394-6. PubMed ID: 10322924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of melatonin on production of hydroxyl radical and lactate dehydrogenase during hypoxia in rat cortical slices.
    Li XJ; Gu J; Pan BS; Sun FY
    Zhongguo Yao Li Xue Bao; 1999 Mar; 20(3):201-5. PubMed ID: 10452092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Hydroxyl radical generation and post-ischemic reperfusion brain damage implications for neuroprotection].
    Kanazawa A; Kondo T
    No To Shinkei; 1996 Jun; 48(6):567-72. PubMed ID: 8703560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis.
    Christensen T; Bruhn T; Balchen T; Diemer NH
    Neurobiol Dis; 1994 Dec; 1(3):131-8. PubMed ID: 9173992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl radical production in the cortex and striatum in a rat model of focal cerebral ischemia.
    Ste-Marie L; Vachon P; Vachon L; Bémeur C; Guertin MC; Montgomery J
    Can J Neurol Sci; 2000 May; 27(2):152-9. PubMed ID: 10830350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective brain hypothermia protects against hypoxic-ischemic injury in newborn rats by reducing hydroxyl radical production.
    Hashimoto T; Yonetani M; Nakamura H
    Kobe J Med Sci; 2003; 49(3-4):83-91. PubMed ID: 14970751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [HPLC--detection of hydroxyl radicals in striatum extracellular fluid in rats subjected to reperfusion after cerebral ischemia and the action of vitamin E].
    Hu D; Feng YP
    Yao Xue Xue Bao; 1993; 28(5):337-41. PubMed ID: 8237377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain.
    Hall ED; Andrus PK; Althaus JS; VonVoigtlander PF
    J Neurosci Res; 1993 Jan; 34(1):107-12. PubMed ID: 8380874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal ischemia: reperfusion-mediated increase in hydroxyl free radical formation as reported by salicylate hydroxylation.
    Rose S; Floyd RA; Eneff K; Bühren V; Massion W
    Shock; 1994 Jun; 1(6):452-6. PubMed ID: 7735975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liver reperfusion-induced decrease in dynamic compliance and increase in airway resistance are ameliorated by preischemic treatment with melatonin through scavenging hydroxyl radicals in rat lungs.
    Yeh JH; Su CL; Chen CF; Wang D; Wang JJ
    Transplant Proc; 2012 May; 44(4):966-9. PubMed ID: 22564598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo monitoring of .OH generation on jejunal ischemic injury by dialysis technique.
    Hirata T; Obata T; Yamanaka Y; Uchida Y
    Res Commun Mol Pathol Pharmacol; 1996 Aug; 93(2):187-97. PubMed ID: 8884990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbic acid radical, superoxide, and hydroxyl radical are detected in reperfusion injury of rat liver using electron spin resonance spectroscopy.
    Togashi H; Shinzawa H; Yong H; Takahashi T; Noda H; Oikawa K; Kamada H
    Arch Biochem Biophys; 1994 Jan; 308(1):1-7. PubMed ID: 8311441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical generation in the cat retina during reperfusion following ischemia.
    Ophir A; Berenshtein E; Kitrossky N; Berman ER; Photiou S; Rothman Z; Chevion M
    Exp Eye Res; 1993 Sep; 57(3):351-7. PubMed ID: 8224022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke.
    Liu S; Liu M; Peterson S; Miyake M; Vallyathan V; Liu KJ
    J Neurosci Res; 2003 Mar; 71(6):882-8. PubMed ID: 12605415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the application of 4-hydroxybenzoic acid as a trapping agent to study hydroxyl radical generation during cerebral ischemia and reperfusion.
    Liu M; Liu S; Peterson SL; Miyake M; Liu KJ
    Mol Cell Biochem; 2002; 234-235(1-2):379-85. PubMed ID: 12162456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ischemic preconditioning decreases the reperfusion-related formation of hydroxyl radicals in a rabbit model of regional myocardial ischemia and reperfusion: the role of K(ATP) channels.
    Raphael J; Drenger B; Rivo J; Berenshtein E; Chevion M; Gozal Y
    Free Radic Res; 2005 Jul; 39(7):747-54. PubMed ID: 16036354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of hydroxyl radicals in the anterior optic nerve of the cat following transient ischemia.
    Ophir A; Porges Y
    Ophthalmic Surg Lasers; 2001; 32(1):55-62. PubMed ID: 11195744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia.
    Yamamoto T; Yuki S; Watanabe T; Mitsuka M; Saito KI; Kogure K
    Brain Res; 1997 Jul; 762(1-2):240-2. PubMed ID: 9262182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretreatment with melatonin exerts anti-inflammatory effects against ischemia/reperfusion injury in a rat middle cerebral artery occlusion stroke model.
    Pei Z; Cheung RT
    J Pineal Res; 2004 Sep; 37(2):85-91. PubMed ID: 15298666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression.
    Ling X; Zhang LM; Lu SD; Li XJ; Sun FY
    Zhongguo Yao Li Xue Bao; 1999 May; 20(5):409-14. PubMed ID: 10678086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.