BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10323241)

  • 1. The Bacillus subtilis htpG gene is not involved in thermal stress management.
    Versteeg S; Mogk A; Schumann W
    Mol Gen Genet; 1999 Apr; 261(3):582-8. PubMed ID: 10323241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control.
    Schulz A; Schwab S; Homuth G; Versteeg S; Schumann W
    J Bacteriol; 1997 May; 179(10):3103-9. PubMed ID: 9150201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis.
    Schulz A; Tzschaschel B; Schumann W
    Mol Microbiol; 1995 Feb; 15(3):421-9. PubMed ID: 7540247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the Bacillus subtilis heat shock gene htpG is under positive control.
    Versteeg S; Escher A; Wende A; Wiegert T; Schumann W
    J Bacteriol; 2003 Jan; 185(2):466-74. PubMed ID: 12511492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes.
    Schulz A; Schumann W
    J Bacteriol; 1996 Feb; 178(4):1088-93. PubMed ID: 8576042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK.
    Yuan G; Wong SL
    J Bacteriol; 1995 Nov; 177(22):6462-8. PubMed ID: 7592421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells.
    Thomas JG; Baneyx F
    Mol Microbiol; 2000 Jun; 36(6):1360-70. PubMed ID: 10931286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dnaK operon of Bacillus subtilis is heptacistronic.
    Homuth G; Masuda S; Mogk A; Kobayashi Y; Schumann W
    J Bacteriol; 1997 Feb; 179(4):1153-64. PubMed ID: 9023197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heat shock gene, htpG, and thermotolerance in the cyanobacterium, Synechocystis sp. PCC 6803.
    Fang F; Barnum SR
    Curr Microbiol; 2003 Oct; 47(4):341-6. PubMed ID: 14629017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HspA and HtpG enhance thermotolerance in the cyanobacterium, Microcystis aeruginosa NIES-298.
    Rhee JS; Ki JS; Kim BM; Hwang SJ; Choi IY; Lee JS
    J Microbiol Biotechnol; 2012 Jan; 22(1):118-25. PubMed ID: 22297228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative vectors for constructing single-copy transcriptional fusions between Bacillus subtilis promoters and various reporter genes encoding heat-stable enzymes.
    Mogk A; Hayward R; Schumann W
    Gene; 1996 Dec; 182(1-2):33-6. PubMed ID: 8982064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.
    Zuber U; Schumann W
    J Bacteriol; 1994 Mar; 176(5):1359-63. PubMed ID: 8113175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins.
    Nakamoto H; Fujita K; Ohtaki A; Watanabe S; Narumi S; Maruyama T; Suenaga E; Misono TS; Kumar PK; Goloubinoff P; Yoshikawa H
    J Biol Chem; 2014 Feb; 289(9):6110-9. PubMed ID: 24415765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response.
    Parsot C; Mekalanos JJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9898-902. PubMed ID: 2124707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HtpG plays a role in cold acclimation in cyanobacteria.
    Hossain MM; Nakamoto H
    Curr Microbiol; 2002 Apr; 44(4):291-6. PubMed ID: 11910501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat-induced expression and chemically induced expression of the Escherichia coli stress protein HtpG are affected by the growth environment.
    Mason CA; Dünner J; Indra P; Colangelo T
    Appl Environ Microbiol; 1999 Aug; 65(8):3433-40. PubMed ID: 10427031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE).
    Yuan G; Wong SL
    J Bacteriol; 1995 Oct; 177(19):5427-33. PubMed ID: 7559325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG In vivo.
    Thomas JG; Baneyx F
    J Bacteriol; 1998 Oct; 180(19):5165-72. PubMed ID: 9748451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria.
    Chastanet A; Fert J; Msadek T
    Mol Microbiol; 2003 Feb; 47(4):1061-73. PubMed ID: 12581359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.