These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10323298)

  • 81. Covert shifts of attention precede involuntary eye movements.
    Peterson MS; Kramer AF; Irwin DE
    Percept Psychophys; 2004 Apr; 66(3):398-405. PubMed ID: 15283065
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision.
    Salinas E; Steinberg BR; Sussman LA; Fry SM; Hauser CK; Anderson DD; Stanford TR
    Elife; 2019 Jun; 8():. PubMed ID: 31225794
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Age-Based Developmental Biomarkers in Eye Movements: A Retrospective Analysis Using Machine Learning.
    Hunfalvay M; Bolte T; Singh A; Greenstein E; Murray NP; Carrick FR
    Brain Sci; 2024 Jul; 14(7):. PubMed ID: 39061426
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Purkinje Cell Activity in the Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques.
    Avila E; Flierman NA; Holland PJ; Roelfsema PR; Frens MA; Badura A; De Zeeuw CI
    Front Cell Neurosci; 2022; 16():863181. PubMed ID: 35573834
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Multisensory integration attenuates visually induced oculomotor inhibition of return.
    Tang X; Yuan M; Shi Z; Gao M; Ren R; Wei M; Gao Y
    J Vis; 2022 Mar; 22(4):7. PubMed ID: 35297999
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Impaired Spatial Inhibition Processes for Interhemispheric Anti-saccades following Dorsal Posterior Parietal Lesions.
    Ouerfelli-Ethier J; Salemme R; Fournet R; Urquizar C; Pisella L; Khan AZ
    Cereb Cortex Commun; 2021; 2(3):tgab054. PubMed ID: 34604753
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Isolated face features are sufficient to elicit ultra-rapid and involuntary orienting responses toward faces.
    Kauffmann L; Khazaz S; Peyrin C; Guyader N
    J Vis; 2021 Feb; 21(2):4. PubMed ID: 33544121
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The parallel programming of landing position in saccadic eye movement sequences.
    McSorley E; Gilchrist ID; McCloy R
    J Vis; 2020 Jan; 20(1):2. PubMed ID: 31999821
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The role of fixation disengagement in the parallel programming of sequences of saccades.
    McSorley E; Gilchrist ID; McCloy R
    Exp Brain Res; 2019 Nov; 237(11):3033-3045. PubMed ID: 31531688
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The temporal and spatial constraints of saccade planning to double-step target displacements.
    Kelly S; Zhou W; Bansal S; Peterson MS; Joiner WM
    Vision Res; 2019 Oct; 163():1-13. PubMed ID: 31404552
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The programming of sequences of saccades.
    McSorley E; Gilchrist ID; McCloy R
    Exp Brain Res; 2019 Apr; 237(4):1009-1018. PubMed ID: 30725153
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Face perception influences the programming of eye movements.
    Kauffmann L; Peyrin C; Chauvin A; Entzmann L; Breuil C; Guyader N
    Sci Rep; 2019 Jan; 9(1):560. PubMed ID: 30679472
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The role of attention in eye-movement awareness.
    Mahon A; Clarke ADF; Hunt AR
    Atten Percept Psychophys; 2018 Oct; 80(7):1691-1704. PubMed ID: 29968082
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Towards a unifying mechanism for cancelling movements.
    Noorani I
    Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1718):. PubMed ID: 28242725
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The Concurrent Programming of Saccades.
    McSorley E; McCloy R; Williams L
    PLoS One; 2016; 11(12):e0168724. PubMed ID: 28005964
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Shifts of attention bias awareness of voluntary and reflexive eye movements.
    Robinson MM; Irwin DE
    Exp Brain Res; 2016 Jun; 234(6):1689-99. PubMed ID: 26873348
    [TBL] [Abstract][Full Text] [Related]  

  • 97. LATER models of neural decision behavior in choice tasks.
    Noorani I
    Front Integr Neurosci; 2014; 8():67. PubMed ID: 25202242
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Using E-Z Reader to examine the concurrent development of eye-movement control and reading skill.
    Reichle ED; Liversedge SP; Drieghe D; Blythe HI; Joseph HS; White SJ; Rayner K
    Dev Rev; 2013 Jun; 33(2):110-149. PubMed ID: 24058229
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Error awareness and antisaccade performance.
    Taylor AJ; Hutton SB
    Exp Brain Res; 2011 Aug; 213(1):27-34. PubMed ID: 21735247
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Altered error processing following vascular thalamic damage: evidence from an antisaccade task.
    Peterburs J; Pergola G; Koch B; Schwarz M; Hoffmann KP; Daum I; Bellebaum C
    PLoS One; 2011; 6(6):e21517. PubMed ID: 21731771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.