These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10327196)

  • 21. Walking and wheelchair navigation in patients with left visual neglect.
    Turton AJ; Dewar SJ; Lievesley A; O'Leary K; Gabb J; Gilchrist ID
    Neuropsychol Rehabil; 2009 Apr; 19(2):274-90. PubMed ID: 18609014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy consumption during prosthetic walking and wheelchair locomotion by elderly hip disarticulation amputees.
    Chin T; Oyabu H; Maeda Y; Takase I; Machida K
    Am J Phys Med Rehabil; 2009 May; 88(5):399-403. PubMed ID: 19620952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-stroke visual neglect affects goal-directed locomotion in different perceptuo-cognitive conditions and on a wide visual spectrum.
    Ogourtsova T; Archambault PS; Lamontagne A
    Restor Neurol Neurosci; 2018; 36(3):313-331. PubMed ID: 29782328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degree of coordination between breathing and rhythmic arm movements during hand rim wheelchair propulsion.
    Fabre N; Perrey S; Arbez L; Ruiz J; Tordi N; Rouillon JD
    Int J Sports Med; 2006 Jan; 27(1):67-74. PubMed ID: 16388445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The interplay between strategic and adaptive control mechanisms in plastic recalibration of locomotor function.
    Richards JT; Mulavara AP; Bloomberg JJ
    Exp Brain Res; 2007 Apr; 178(3):326-38. PubMed ID: 17061092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery trajectories of vestibulopathic subjects after perturbations during locomotion.
    Wall C; Oddsson LI; Patronik N; Sienko K; Kentala E
    J Vestib Res; 2002-2003; 12(5-6):239-53. PubMed ID: 14501101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Obstacle avoidance locomotor tasks: adaptation, memory and skill transfer.
    Kloter E; Dietz V
    Eur J Neurosci; 2012 May; 35(10):1613-21. PubMed ID: 22506969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path.
    Glasauer S; Amorim MA; Viaud-Delmon I; Berthoz A
    Exp Brain Res; 2002 Aug; 145(4):489-97. PubMed ID: 12172660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the origin of planar covariation of elevation angles during human locomotion.
    Ivanenko YP; d'Avella A; Poppele RE; Lacquaniti F
    J Neurophysiol; 2008 Apr; 99(4):1890-8. PubMed ID: 18272871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Keep looking ahead? Re-direction of visual fixation does not always occur during an unpredictable obstacle avoidance task.
    Marigold DS; Weerdesteyn V; Patla AE; Duysens J
    Exp Brain Res; 2007 Jan; 176(1):32-42. PubMed ID: 16819646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vestibular disorders and impaired path integration along a linear trajectory.
    Cohen HS
    J Vestib Res; 2000; 10(1):7-15. PubMed ID: 10798829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Walking and wheelchair energetics in persons with paraplegia.
    Cerny D; Waters R; Hislop H; Perry J
    Phys Ther; 1980 Sep; 60(9):1133-9. PubMed ID: 7413741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human side preferences in three different whole-body movement tasks.
    Mohr C; Brugger P; Bracha HS; Landis T; Viaud-Delmon I
    Behav Brain Res; 2004 May; 151(1-2):321-6. PubMed ID: 15084448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of aging on visual reweighting during locomotion.
    Berard J; Fung J; Lamontagne A
    Clin Neurophysiol; 2012 Jul; 123(7):1422-8. PubMed ID: 22204920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of cutaneous reflexes in arm muscles during walking: further evidence of similar control mechanisms for rhythmic human arm and leg movements.
    Zehr EP; Haridas C
    Exp Brain Res; 2003 Mar; 149(2):260-6. PubMed ID: 12610695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homing by path integration when a locomotion trajectory crosses itself.
    Yamamoto N; Meléndez JA; Menzies DT
    Perception; 2014; 43(10):1049-60. PubMed ID: 25509682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissociating position and heading estimations: rotated visual orientation cues perceived after walking reset headings but not positions.
    Mou W; Zhang L
    Cognition; 2014 Dec; 133(3):553-71. PubMed ID: 25215931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.