These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10327636)

  • 1. Measuring conformational stability of proteins using an optimized temperature-controlled capillary electrophoresis approach.
    Rochu D; Ducret G; Masson P
    J Chromatogr A; 1999 Apr; 838(1-2):157-65. PubMed ID: 10327636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary zone electrophoresis with optimized temperature control for studying thermal denaturation of proteins at various pH.
    Rochu D; Ducret G; Ribes F; Vanin S; Masson P
    Electrophoresis; 1999 Jun; 20(7):1586-94. PubMed ID: 10424484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic stability of porcine beta-lactoglobulin. A structural relevance.
    Burova TV; Grinberg NV; Visschers RW; Grinberg VY; De Kruif CG
    Eur J Biochem; 2002 Aug; 269(16):3958-68. PubMed ID: 12180972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride.
    Agashe VR; Udgaonkar JB
    Biochemistry; 1995 Mar; 34(10):3286-99. PubMed ID: 7880824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal unfolding of beta-lactoglobulin, alpha-lactalbumin, and bovine serum albumin. A thermodynamic approach.
    Relkin P
    Crit Rev Food Sci Nutr; 1996 Jul; 36(6):565-601. PubMed ID: 8841732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring folding/unfolding transitions of proteins by capillary zone electrophoresis: measurement of deltaG and its variation along the pH scale.
    Verzola B; Fogolari F; Righetti PG
    Electrophoresis; 2001 Oct; 22(17):3728-35. PubMed ID: 11699911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-state thermal unfolding and aggregation of beta-lactoglobulin A.
    Qi XL; Brownlow S; Holt C; Sellers P
    Biochem Soc Trans; 1995 Feb; 23(1):74S. PubMed ID: 7758792
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of stabilizers and denaturants on the cold denaturation temperatures of proteins and implications for freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1167-75. PubMed ID: 16028018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A differential scanning calorimetric study of the thermal denaturation of bovine beta-lactoglobulin. Thermal behaviour at temperatures up to 100 degrees C.
    de Wit JN; Swinkels GA
    Biochim Biophys Acta; 1980 Jul; 624(1):40-50. PubMed ID: 7407243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal stability of proteins in the presence of poly(ethylene glycols).
    Lee LL; Lee JC
    Biochemistry; 1987 Dec; 26(24):7813-9. PubMed ID: 3427106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational stability of muscle acylphosphatase: the role of temperature, denaturant concentration, and pH.
    Chiti F; van Nuland NA; Taddei N; Magherini F; Stefani M; Ramponi G; Dobson CM
    Biochemistry; 1998 Feb; 37(5):1447-55. PubMed ID: 9477974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of capillary electrophoresis for monitoring effects of excipients on protein conformation.
    McIntosh KA; Charman WN; Charman SA
    J Pharm Biomed Anal; 1998 Feb; 16(6):1097-105. PubMed ID: 9547715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucosylation of beta-lactoglobulin lowers the heat capacity change of unfolding; a unique way to affect protein thermodynamics.
    van Teeffelen AM; Broersen K; de Jongh HH
    Protein Sci; 2005 Aug; 14(8):2187-94. PubMed ID: 15987887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperthermophile protein folding thermodynamics: differential scanning calorimetry and chemical denaturation of Sac7d.
    McCrary BS; Edmondson SP; Shriver JW
    J Mol Biol; 1996 Dec; 264(4):784-805. PubMed ID: 8980686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure denaturation of beta-lactoglobulin. Different stabilities of isoforms A and B, and an investigation of the Tanford transition.
    Botelho MM; Valente-Mesquita VL; Oliveira KM; Polikarpov I; Ferreira ST
    Eur J Biochem; 2000 Apr; 267(8):2235-41. PubMed ID: 10759846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple advantages of capillary zone electrophoresis for exploring protein conformational stability.
    Rochu D; Masson P
    Electrophoresis; 2002 Jan; 23(2):189-202. PubMed ID: 11840523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced thermodynamic stability of beta-lactoglobulin at low pH. A possible mechanism.
    Kella NK; Kinsella JE
    Biochem J; 1988 Oct; 255(1):113-8. PubMed ID: 3196307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric study of the heat and cold denaturation of beta-lactoglobulin.
    Griko YV; Privalov PL
    Biochemistry; 1992 Sep; 31(37):8810-5. PubMed ID: 1390668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of unfolding for turkey ovomucoid third domain: thermal and chemical denaturation.
    Swint L; Robertson AD
    Protein Sci; 1993 Dec; 2(12):2037-49. PubMed ID: 8298454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.