These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 10328926)

  • 1. Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in Xenopus laevis.
    Mills KR; Kruep D; Saha MS
    Dev Biol; 1999 May; 209(2):352-68. PubMed ID: 10328926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of early lineage in GABAergic and glutamatergic cell fate determination in Xenopus laevis.
    Li M; Sipe CW; Hoke K; August LL; Wright MA; Saha MS
    J Comp Neurol; 2006 Apr; 495(6):645-57. PubMed ID: 16506195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo.
    Kinoshita K; Bessho T; Asashima M
    Dev Biol; 1993 Nov; 160(1):276-84. PubMed ID: 8224543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms regulating the origins of the vertebrate vascular system.
    Saha MS; Cox EA; Sipe CW
    J Cell Biochem; 2004 Sep; 93(1):46-56. PubMed ID: 15352161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xl erg: expression pattern and overexpression during development plead for a role in endothelial cell differentiation.
    Baltzinger M; Mager-Heckel AM; Remy P
    Dev Dyn; 1999 Dec; 216(4-5):420-33. PubMed ID: 10633861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of hemangioblasts from embryonic mesothelial cells? A model on the origin of the vertebrate cardiovascular system.
    Muñoz-Chápuli R; Pérez-Pomares JM; Macías D; García-Garrido L; Carmona R; González M
    Differentiation; 1999 Mar; 64(3):133-41. PubMed ID: 10234810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of VEGF on blood vessels and blood cells during Xenopus development.
    Koibuchi N; Taniyama Y; Nagao K; Ogihara T; Kaneda Y; Morishita R
    Biochem Biophys Res Commun; 2006 May; 344(1):339-45. PubMed ID: 16630570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing cell fate in brain formation during embryogenesis of the ascidian Halocynthia roretzi.
    Taniguchi K; Nishida H
    Dev Growth Differ; 2004 Apr; 46(2):163-80. PubMed ID: 15066195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives.
    Grunz H
    Int J Dev Biol; 1994 Mar; 38(1):69-76. PubMed ID: 8074997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noggin signaling from Xenopus animal blastomere lineages promotes a neural fate in neighboring vegetal blastomere lineages.
    Huang S; Yan B; Sullivan SA; Moody SA
    Dev Dyn; 2007 Jan; 236(1):171-83. PubMed ID: 17096409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A contact-dependent animal-to-vegetal signal biases neural lineages during Xenopus cleavage stages.
    Bauer DV; Best DW; Hainski AM; Moody SA
    Dev Biol; 1996 Sep; 178(2):217-28. PubMed ID: 8812124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing retina fate commitment in Xenopus by blastomere deletion, transplantation, and explant culture.
    Moody SA
    Methods Mol Biol; 2012; 884():115-27. PubMed ID: 22688701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome.
    Stalmans I
    Verh K Acad Geneeskd Belg; 2005; 67(4):229-76. PubMed ID: 16334858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage.
    Cooke J; Webber JA
    J Embryol Exp Morphol; 1985 Aug; 88():85-112. PubMed ID: 4078542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial cell polarity in early Xenopus development.
    Müller HA; Hausen P
    Dev Dyn; 1995 Apr; 202(4):405-20. PubMed ID: 7626797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of muscle fate by cellular interaction is required for mesenchyme formation during ascidian embryogenesis.
    Kim GJ; Nishida H
    Dev Biol; 1999 Oct; 214(1):9-22. PubMed ID: 10491253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeling of developing vascular endothelium after injections of rhodamine-dextran into blastomeres of Xenopus laevis.
    Rovainen CM
    J Exp Zool; 1991 Aug; 259(2):209-21. PubMed ID: 1723747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages.
    Martindale MQ; Henry JQ
    Dev Biol; 1999 Oct; 214(2):243-57. PubMed ID: 10525332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesendoderm cell and archenteron formation in isolated blastomeres from the shrimp Sicyonia ingentis.
    Hertzler PL; Wang SW; Clark WH
    Dev Biol; 1994 Aug; 164(2):333-44. PubMed ID: 8045337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.