These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10329120)

  • 21. Steady-state kinetic behaviour of two- or n-enzyme systems made of free sequential enzymes involved in a metabolic pathway.
    Legent G; Thellier M; Norris V; Ripoll C
    C R Biol; 2006 Dec; 329(12):963-6. PubMed ID: 17126800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient-state kinetic approach to mechanisms of enzymatic catalysis.
    Fisher HF
    Acc Chem Res; 2005 Mar; 38(3):157-66. PubMed ID: 15766234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphoglycerate kinase--glyceraldehyde-3-phosphate dehydrogenase interaction: reaction rate studies.
    Prabhakar P; Malhotra OP; Kayastha AM
    Indian J Biochem Biophys; 1999 Apr; 36(2):88-100. PubMed ID: 10549168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simple and complex spatiotemporal structures in a glycolytic allosteric enzyme model.
    Zhang L; Gao Q; Wang Q; Zhang X
    Biophys Chem; 2007 Jan; 125(1):112-6. PubMed ID: 16890343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conservation of glycolytic oscillations in Saccharomyces cerevisiae and human pancreatic beta-cells: a study of metabolic robustness.
    Silva AS; Yunes JA
    Genet Mol Res; 2006 Aug; 5(3):525-35. PubMed ID: 17117368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A theoretical treatment of damped oscillations in the transient state kinetics of single-enzyme reactions.
    Ryde-Pettersson U
    Eur J Biochem; 1989 Dec; 186(1-2):145-8. PubMed ID: 2598925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Conditions, necessary for realizing the catalytic effect of enzymes: role of the environment].
    Dmitriev LF
    Biofizika; 2003; 48(3):417-25. PubMed ID: 12815851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant.
    Rami Tzafriri A; Edelman ER
    J Theor Biol; 2007 Apr; 245(4):737-48. PubMed ID: 17234216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear dynamics of eucaryotic pyruvate dehydrogenase multienzyme complex: decarboxylation rate, oscillations, and multiplicity.
    Zeng AP; Modak J; Deckwer WD
    Biotechnol Prog; 2002; 18(6):1265-76. PubMed ID: 12467461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Waiting cycle times and generalized Haldane equality in the steady-state cycle kinetics of single enzymes.
    Ge H
    J Phys Chem B; 2008 Jan; 112(1):61-70. PubMed ID: 18069809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discrimination between mathematical models of biological systems exemplified by enzyme steady state kinetics.
    Mannervik B; Bártfai T
    Acta Biol Med Ger; 1973; 31(2):203-15. PubMed ID: 4149362
    [No Abstract]   [Full Text] [Related]  

  • 32. Concentration profiles near an activated enzyme.
    Park S; Agmon N
    J Phys Chem B; 2008 Sep; 112(38):12104-14. PubMed ID: 18759406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.
    Min W; Xie XS; Bagchi B
    J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steady state multiplicity and stability of enzymatic reaction systems.
    Bruns DD; Bailey LE; Luss D
    Biotechnol Bioeng; 1973 Nov; 15(6):1131-45. PubMed ID: 4766116
    [No Abstract]   [Full Text] [Related]  

  • 36. A novel thermodynamic relationship based on Kramers Theory for studying enzyme kinetics under high viscosity.
    Siddiqui KS; Bokhari SA; Afzal AJ; Singh S
    IUBMB Life; 2004 Jul; 56(7):403-7. PubMed ID: 15545217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.
    Ciliberto A; Capuani F; Tyson JJ
    PLoS Comput Biol; 2007 Mar; 3(3):e45. PubMed ID: 17367203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Why substrate depletion has apparent first-order kinetics in enzymatic digestion.
    Srividhya J; Schnell S
    Comput Biol Chem; 2006 Jun; 30(3):209-14. PubMed ID: 16651027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic channelling and control of the flux.
    Kholodenko BN; Westerhoff HV
    FEBS Lett; 1993 Mar; 320(1):71-4. PubMed ID: 8462680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism distinguishability problem in biochemical kinetics: the single-enzyme, single-substrate reaction as a case study.
    Schnell S; Chappell MJ; Evans ND; Roussel MR
    C R Biol; 2006 Jan; 329(1):51-61. PubMed ID: 16399643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.