BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 10329136)

  • 21. Inactivation of DNA proofreading obviates the need for SOS induction in frameshift mutagenesis.
    Fuchs RP; Napolitano RL
    Proc Natl Acad Sci U S A; 1998 Oct; 95(22):13114-9. PubMed ID: 9789050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A umuDC-independent SOS pathway for frameshift mutagenesis.
    Maenhaut-Michel G; Janel-Bintz R; Fuchs RP
    Mol Gen Genet; 1992 Nov; 235(2-3):373-80. PubMed ID: 1465109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of frameshift (deletion) generated by acetylaminofluorene-derived DNA adducts in vitro.
    Shibutani S; Suzuki N; Grollman AP
    Biochemistry; 2004 Dec; 43(50):15929-35. PubMed ID: 15595849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Position of a single acetylaminofluorene adduct within a mutational hot spot is critical for the related mutagenic event.
    Burnouf D; Koehl P; Fuchs RP
    Basic Life Sci; 1990; 52():277-87. PubMed ID: 2183773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specificity of replicative and SOS-inducible DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains overexpressing SOS-inducible DNA polymerases to 30 chemical mutagens.
    Matsui K; Yamada M; Imai M; Yamamoto K; Nohmi T
    DNA Repair (Amst); 2006 Apr; 5(4):465-78. PubMed ID: 16455311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adducts formed by the food mutagen 2-amino-3-methylimidazo(4,5-f) quinoline induce frameshift mutations at hot spots through an SOS-independent pathway.
    Maenhaut-Michel G; Janel-Bintz R; Samuel N; Fuchs RP
    Mol Gen Genet; 1997 Feb; 253(5):634-41. PubMed ID: 9065697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the sequence effects on NarI-induced -2 frameshift mutagenesis by dynamic 19F NMR, UV, and CD spectroscopy.
    Jain N; Li Y; Zhang L; Meneni SR; Cho BP
    Biochemistry; 2007 Nov; 46(46):13310-21. PubMed ID: 17960913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of DNA polymerase II-mediated frameshift mutagenesis.
    Becherel OJ; Fuchs RP
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8566-71. PubMed ID: 11447256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of plasmids containing a unique acetylaminofluorene adduct located within a mutation hot spot. A new probe for frameshift mutagenesis.
    Koehl P; Burnouf D; Fuchs RP
    J Mol Biol; 1989 May; 207(2):355-64. PubMed ID: 2754729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA sequence determinants of carcinogen-induced frameshift mutagenesis.
    Napolitano RL; Lambert IB; Fuchs RP
    Biochemistry; 1994 Feb; 33(6):1311-5. PubMed ID: 8312248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unusual helical packing in crystals of DNA bearing a mutation hot spot.
    Timsit Y; Westhof E; Fuchs RP; Moras D
    Nature; 1989 Oct; 341(6241):459-62. PubMed ID: 2797169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carcinogen-induced frameshift mutagenesis in repetitive sequences.
    Lambert IB; Napolitano RL; Fuchs RP
    Proc Natl Acad Sci U S A; 1992 Feb; 89(4):1310-4. PubMed ID: 1741385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SOS factors involved in translesion synthesis.
    Napolitano RL; Lambert IB; Fuchs RP
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5733-8. PubMed ID: 9159142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational Insights into the Mechanism of Acetylaminofluorene-dG-Induced Frameshift Mutations in the NarI Mutational Hotspot.
    Xu L; Cho BP
    Chem Res Toxicol; 2016 Feb; 29(2):213-26. PubMed ID: 26733364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence-dependent modulation of nucleotide excision repair: the efficiency of the incision reaction is inversely correlated with the stability of the pre-incision UvrB-DNA complex.
    Delagoutte E; Bertrand-Burggraf E; Dunand J; Fuchs RP
    J Mol Biol; 1997 Mar; 266(4):703-10. PubMed ID: 9102463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-specific frame-shift mutagenesis by the 1-nitropyrene-DNA adduct N-(deoxyguanosin-8-y1)-1-aminopyrene located in the (CG)3 sequence: effects of SOS, proofreading, and mismatch repair.
    Malia SA; Vyas RR; Basu AK
    Biochemistry; 1996 Apr; 35(14):4568-77. PubMed ID: 8605207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A role for DNA polymerase V in G --> T mutations from the major benzo[a]pyrene N2-dG adduct when studied in a 5'-TGT sequence in E. coli.
    Yin J; Seo KY; Loechler EL
    DNA Repair (Amst); 2004 Mar; 3(3):323-34. PubMed ID: 15177047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular strategies for accommodating replication-hindering adducts in DNA: control by the SOS response in Escherichia coli.
    Koffel-Schwartz N; Coin F; Veaute X; Fuchs RP
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7805-10. PubMed ID: 8755557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA sequence analysis of mutations induced by N-2-acetylamino-7-iodofluorene in plasmid pBR322 in Escherichia coli.
    Hoffmann GR; Fuchs RP
    J Mol Biol; 1990 May; 213(2):239-46. PubMed ID: 2187998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutagenic effects of 2-deoxyribonolactone in Escherichia coli. An abasic lesion that disobeys the A-rule.
    Kroeger KM; Jiang YL; Kow YW; Goodman MF; Greenberg MM
    Biochemistry; 2004 Jun; 43(21):6723-33. PubMed ID: 15157106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.