BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 10329143)

  • 1. Post-transcriptional control of bacteriophage T4 gene 25 expression: mRNA secondary structure that enhances translational initiation.
    Nivinskas R; Malys N; Klausa V; Vaiskunaite R; Gineikiene E
    J Mol Biol; 1999 May; 288(3):291-304. PubMed ID: 10329143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of bacteriophage T4 gene 25 is regulated via RNA secondary structure in the translational initiation region.
    Nivinskas R; Vaiskunaite R; Raudonikiene A
    J Mol Biol; 1993 Apr; 230(3):717-21. PubMed ID: 8478927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-canonical RNA arrangement in T4-even phages: accommodated ribosome binding site at the gene 26-25 intercistronic junction.
    Malys N; Nivinskas R
    Mol Microbiol; 2009 Sep; 73(6):1115-27. PubMed ID: 19708923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli.
    Seo SW; Yang J; Jung GY
    Biotechnol Bioeng; 2009 Oct; 104(3):611-6. PubMed ID: 19579224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endoribonuclease RegB from bacteriophage T4 is necessary for the degradation of early but not middle or late mRNAs.
    Sanson B; Hu RM; Troitskayadagger E; Mathy N; Uzan M
    J Mol Biol; 2000 Apr; 297(5):1063-74. PubMed ID: 10764573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational repression by the bacteriophage T4 gene 32 protein involves specific recognition of an RNA pseudoknot structure.
    Shamoo Y; Tam A; Konigsberg WH; Williams KR
    J Mol Biol; 1993 Jul; 232(1):89-104. PubMed ID: 8331672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual role of the sequence-specific bacteriophage T4 endoribonuclease RegB. mRNA inactivation and mRNA destabilization.
    Sanson B; Uzan M
    J Mol Biol; 1993 Oct; 233(3):429-46. PubMed ID: 8411154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-cistronic expression plasmids for high-level gene expression in Escherichia coli preventing translational initiation inhibition caused by the intramolecular local secondary structure of mRNA.
    Kimura S; Umemura T; Iyanagi T
    J Biochem; 2005 Apr; 137(4):523-33. PubMed ID: 15858177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Correlation between the effectiveness of translation initiation and secondary structure of mRNA in the hybrid gene cro-lacIZ].
    Khudiakov IuE; Kalinina TI; Nepliueva VS; Smirnov VD
    Mol Biol (Mosk); 1987; 21(6):1504-12. PubMed ID: 2451779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of the length of the loop segment of local mRNA secondary structure in the region of lacZ gene translation initiation on its expression].
    Nikolenko GN; Kravchenko VV
    Mol Gen Mikrobiol Virusol; 1996; (1):28-32. PubMed ID: 8786747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of post-segregational killing: secondary structure analysis of the entire Hok mRNA from plasmid R1 suggests a fold-back structure that prevents translation and antisense RNA binding.
    Thisted T; Sørensen NS; Gerdes K
    J Mol Biol; 1995 Apr; 247(5):859-73. PubMed ID: 7536849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of the leader region of mRNA for translation initiation of ColE2 Rep protein.
    Nagase T; Nishio SY; Itoh T
    Plasmid; 2007 Nov; 58(3):249-60. PubMed ID: 17720244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of post-segregational killing by hok-homologue pnd of plasmid R483: two translational control elements in the pnd mRNA.
    Nielsen AK; Gerdes K
    J Mol Biol; 1995 Jun; 249(2):270-82. PubMed ID: 7783193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data.
    de Smit MH; van Duin J
    J Mol Biol; 1994 Nov; 244(2):144-50. PubMed ID: 7966326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dependence of the level of gene expression in E. coli on the structure of the translation initiation segment (TIR)].
    Gurevich AI; Esipov RS; Kachalina TA; Kaiushin AL
    Bioorg Khim; 1995 Apr; 21(4):282-8. PubMed ID: 7786319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The Shine-Dalgarno sequence and the effectiveness of translation initiation].
    Khudiakov IuE
    Mol Biol (Mosk); 1985; 19(3):702-16. PubMed ID: 2412105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of leader primary structure on the translational efficiency of phosphoglycerate kinase mRNA in yeast.
    van den Heuvel JJ; Planta RJ; Raué HA
    Yeast; 1990; 6(6):473-82. PubMed ID: 2080664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro secondary structure analysis of mRNA from lacZ translation initiation mutants.
    Schulz VP; Reznikoff WS
    J Mol Biol; 1990 Jan; 211(2):427-45. PubMed ID: 2106583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable Shine-Dalgarno regions; nucleotides between the Shine-Dalgarno sequence and the start codon affect the translation efficiency.
    de Boer HA; Comstock LJ; Hui A; Wong E; Vasser M
    Gene Amplif Anal; 1983; 3():103-16. PubMed ID: 6086029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-transcriptional regulation of rat CYP2E1 expression: role of CYP2E1 mRNA untranslated regions in control of translational efficiency and message stability.
    Kocarek TA; Zangar RC; Novak RF
    Arch Biochem Biophys; 2000 Apr; 376(1):180-90. PubMed ID: 10729204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.